精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知四边形ABCD,AB∥DC,点F在AB的延长线上,连接DF交BC于E且S△DCE=S△FBE
(1)求证:△DCE≌△FBE;
(2)若BE是△ADF的中位线,且BE+FB=6厘米,求DC+AD+AB的长.
分析:(1)根据AB∥DC得出△DCE∽△FBE,由相似三角形的面积之比等于相似比的平方,得出两三角形的相似比为1,从而得出:△DCE≌△FBE.
(2)根据BE是△ADF的中位线得出BE∥AD,AD=2BE,AB=FB,进而得出四边形ABCD是平行四边形,求出DC+AD+AB的长.
解答:解:(1)∵AB∥DC,
∴∠DCE=∠FBE,∠CDE=∠EFB.
∴△DCE∽△FBE.
S△DCE
S△FBE
=(
DC
FB
)2

∵S△DCE=S△FBE
(
DC
FB
)2=1

∴DC=FB.
∴△DCE≌△FBE.

(2)∵BE是△ADF的中位线,
∴BE∥AD,AD=2BE,AB=FB.
∵AB∥DC,
∴四边形ABCD是平行四边形.
∴AB=CD.
∵BE+FB=6,
∴DC+AD+AB=AB+2BE+AB=2(BE+FB)=12(厘米).
点评:本题考查了相似三角形的判定、全等三角形的判定、平行四边形的判定及其性质、三角形的中位线的性质等知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,已知四边形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求证:PA=PD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形ABCD内接于⊙O,A是
BDC
的中点,AE⊥AC于A,与⊙O及CB精英家教网的延长线分别交于点F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求证:△ADC∽△EBA;
(2)求证:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•梧州)如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.
求证:四边形BECF是平行四边形.

查看答案和解析>>

科目:初中数学 来源:2010年湖南常德市初中毕业学业考试数学试卷 题型:047

如图,已知四边形AB∥CD是菱形,DEAB,DFBC.求证△ADE≌△CDF

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知四边形AB∥CD是菱形,DE∥AB,DFBC.求证

 


查看答案和解析>>

同步练习册答案