1£®¶¯ÊÖ²Ù×÷£º
£¨1£©ÈçͼËùʾ£¬ÒÑÖªÏ߶ÎAB£®ÇëÄãÓó߹水ÏÂÁÐÒªÇó×÷ͼ£º
¢ÙÑÓ³¤Ï߶ÎABµ½C£¬Ê¹BC=AB£»
¢Ú¹ýµãB×÷ÉäÏßBE£¨ÓëAC²»ÔÚͬһÌõÖ±ÏßÉÏ£©£®²¢ÔÚÉäÏßBEÉϽØÈ¡BD=AB£»
¢ÛÁ¬½ÓADºÍCD£®
£¨2£©²âÁ¿·¢ÏÖ£º¢ÙÀûÓÃÁ¿½ÇÆ÷²âÁ¿¡ÏBADºÍ¡ÏADBµÄ´óС£¬ËüÃÇÖ®¼äÓÐʲô¹Øϵ£¿
¢Ú¡ÏBCDºÍ¡ÏBDC´æÔÚ¢ÙÖеĹØϵÂð£¿ÀûÓÃÁ¿½ÇÆ÷Ñé֤һϣ®
¢Û´Ó¢Ù¡¢¢ÚµÄ²âÁ¿½á¹û£¬Ä㻹ÓÐÄÄЩ·¢ÏÖ£¿ÇëÄãд³öÁ½ÌõÀ´£®

·ÖÎö £¨1£©ÀûÓü¸ºÎÓïÑÔ»­³ö¶ÔÓ¦µÄͼÐΣ»
£¨2£©¢ÙÀûÓÃÁ¿½ÇÆ÷²âÁ¿³ö¡ÏBADºÍ¡ÏADB£¬Ôò¿ÉÅжÏËüÃÇÏàµÈ£»
¢ÚÀûÓÃÁ¿½ÇÆ÷²âÁ¿³ö¡ÏBCDºÍ¡ÏBDC£¬Ôò¿ÉÅжÏËüÃÇÏàµÈ£»
¢ÛÀûÓòâÁ¿½á¹ûÒ׵á÷ADCΪֱ½ÇÈý½ÇÐΣ»¡ÏDAC+¡ÏBCD=90¡ãµÈ£®

½â´ð ½â£º£¨1£©Èçͼ£¬BC¡¢BDΪËù×÷£»

£¨2£©¢Ù¡ÏBAD=32¡ã£¬¡ÏADB=32¡ã£¬Ôò¡ÏBAD=¡ÏADB£»
¢Ú¡ÏBCD=58¡ã£¬¡ÏBDC=58¡ã£¬ËùÒÔ¡ÏBCD=¡ÏBDC£»
¢Û¡÷ADCΪֱ½ÇÈý½ÇÐΣ»¡ÏDAC+¡ÏBCD=90¡ã£®

µãÆÀ ±¾Ì⿼²éÁË×÷ͼ-¸´ÔÓ×÷ͼ£º¸´ÔÓ×÷ͼÊÇÔÚÎåÖÖ»ù±¾×÷ͼµÄ»ù´¡ÉϽøÐÐ×÷ͼ£¬Ò»°ãÊǽáºÏÁ˼¸ºÎͼÐεÄÐÔÖʺͻù±¾×÷ͼ·½·¨£®½â¾ö´ËÀàÌâÄ¿µÄ¹Ø¼üÊÇÊìϤ»ù±¾¼¸ºÎͼÐεÄÐÔÖÊ£¬½áºÏ¼¸ºÎͼÐεĻù±¾ÐÔÖʰѸ´ÔÓ×÷ͼ²ð½â³É»ù±¾×÷ͼ£¬Öð²½²Ù×÷£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÈçͼËùʾ£¬Ã¿¸öÔ²ÖÜÉϵÄÊýÊÇ°´ÏÂÊö¹æÔòÖð´Î±ê³öµÄ£ºµÚÒ»´ÎÏÈÔÚÔ²ÖÜÉϱê³ö$\frac{1}{9}$£¬$\frac{2}{9}$Á½¸öÊý£¨Èçͼ¼×£©£¬µÚ¶þ´ÎÓÖÔÚµÚÒ»´Î±ê³öµÄÁ½¸öÊýÖ®¼äµÄÔ²ÖÜÉÏ£¬·Ö±ð±ê³öÕâÁ½¸öÊýµÄºÍ£¨ÈçͼÒÒ£©£¬µÚÈý´ÎÔÙÔÚµÚ¶þ´Î±ê³öµÄËùÓÐÏàÁÚÊýÖ®¼äµÄÔ²ÖÜÉÏ£¬·Ö±ð±ê³öÕâÏàÁÚÁ½ÊýµÄºÍ£¨Èçͼ±û£©£»°´Õմ˹æÔò£¬ÒÀ´ËÀàÍÆ£¬Ò»Ö±±êÏÂÈ¥£®
£¨1£©ÉènÊÇ´óÓÚ1µÄ×ÔÈ»Êý£¬µÚn-1´Î±êÍêÊý×Öºó£¬Ô²ÖÜÉÏËùÓÐÊý×ֵĺͼÇΪSn-1£»µÚn´Î±êÍêÊý×Öºó£¬Ô²ÖÜÉÏËùÓÐÊý×ֵĺͼÇΪSn£¬²ÂÏ벢д³öSnÓëSn-1µÄµÈÁ¿¹Øϵ£»
£¨2£©ÇëÄãÇó³öS102µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Èô¶þ´Îº¯ÊýͼÏóÓëxÖáÏཻÓÚµãA£¨x1£¬0£©£¬B£¨x2£¬0£©£¬Ôò¶Ô³ÆÖá¿É±íʾΪֱÏß$\frac{{x}_{1}{+x}_{2}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖª$\frac{x}{3}=\frac{y}{5}=\frac{z}{6}$£¬ÇÒ3y=2z+6£¬Çóx£¬yµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Ä³½ÌÊҵĿª¹Ø¿ØÖÆ°åÉÏÓÐËĸöÍâÐÎÍêÈ«ÏàͬµÄ¿ª¹Ø£¬ÆäÖÐÁ½¸ö·Ö±ð¿ØÖÆA¡¢BÁ½ÕµµçµÆ£¬ÁíÁ½¸ö·Ö±ð¿ØÖÆC¡¢DÁ½¸öµõÉÈ£®ÒÑÖªµçµÆ¡¢µõÉȾùÕý³££¬ÇÒ´¦ÓÚ²»¹¤×÷״̬£¬¿ª¹ØÓëµçµÆ¡¢µçÉȵĶÔÓ¦¹Øϵδ֪£®ÈôËĸö¿ª¹Ø¾ùÕý³££¬ÔòÈÎÒâ°´ÏÂÒ»¸ö¿ª¹Ø£¬ÕýºÃÒ»ÕµµÆÁÁµÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{4}$B£®$\frac{1}{2}$C£®$\frac{3}{4}$D£®.1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Èç¹û¼Çy=$\frac{{x}^{2}}{1+{x}^{2}}$=f£¨x£©£¬²¢ÇÒf£¨1£©±íʾµ±x=1ʱyµÄÖµ£¬¼´f£¨1£©=$\frac{{1}^{2}}{1+{1}^{2}}$=$\frac{1}{2}$£»f£¨$\frac{1}{2}$£©±íʾµ±x=$\frac{1}{2}$ʱyµÄÖµ£¬¼´f£¨$\frac{1}{2}$£©=$\frac{£¨\frac{1}{2}£©^{2}}{1+£¨\frac{1}{2}£©^{2}}$=$\frac{1}{5}$£»¡­ÄÇôf£¨1£©+f£¨2£©+f£¨$\frac{1}{2}$£©+f£¨3£©+¡­+f£¨n+1£©+f£¨$\frac{1}{n+1}$£©=$\frac{1}{2}$+n£¨½á¹ûÓú¬nµÄ´úÊýʽ±íʾ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Íê³ÉijÏ³Ì£¬¼×¶À×öÐèaÌ죬ÒÒ¶À×öÐèbÌ죬¼×ÒÒÁ½È˺Ï×÷Íê³ÉÕâÏ³ÌµÄÒ»°ëÐèÒªµÄÌìÊýÊÇ£¨¡¡¡¡£©
A£®$\frac{a+b}{ab}$B£®$\frac{ab}{2£¨a+b£©}$C£®$\frac{a+b}{2ab}$D£®$\frac{ab}{a+b}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬¡ÏABMΪֱ½Ç£¬µãCΪÏ߶ÎBAµÄÖе㣬µãDÊÇÉäÏßBMÉϵÄÒ»¸ö¶¯µã£¨²»ÓëµãBÖغϣ©£¬Á¬½áAD£¬×÷BE¡ÍAD£¬´¹×ãΪE£¬Á¬½áCE£¬¹ýµãE×÷EF¡ÍCE£¬½»BDÓÚF£®
£¨1£©ÇóÖ¤£ºBF=FD£»
£¨2£©Èô¡ÏA=45¡ã£¬ÊÔÅжÏËıßÐÎACFEµÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©µ±¡ÏAÔÚʲô·¶Î§È¡ÖµÊ±£¬Ï߶ÎDEÉÏ´æÔÚµãG£¬Âú×ãÌõ¼þDG=$\frac{1}{4}$DA£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÔÚÏÂÁи÷¶àÏîʽ³Ë·¨Öв»ÄÜÓÃƽ·½²î¹«Ê½µÄÊÇ£¨¡¡¡¡£©
A£®£¨m+n£©£¨-m+n£©B£®£¨x3-y3£©£¨x3+y3£©C£®£¨-a-b£©£¨a+b£©D£®£¨ $\frac{1}{3}$a-b£©£¨ $\frac{1}{3}$a+b£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸