2£®ÒÑÖªÅ×ÎïÏßy=$\frac{1}{4}$x2µÄͼÏóÓëÖ±Ïßy=mx+4µÄͼÏó½»ÓÚA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Á½µã£®

£¨1£©Ö±½Óд³öÅ×ÎïÏß¡¢Ö±ÏßÓëyÖáµÄ½»µã×ø±ê£»
£¨2£©¢Ùµ±m=$\frac{3}{2}$ʱ£¨Í¼1£©£¬ÇóA¡¢BÁ½µãµÄ×ø±ê£¬²¢Ö¤Ã÷£º¡÷AOBÊÇÖ±½ÇÈý½ÇÐΣ»
¢Úµ±m¡Ù$\frac{3}{2}$ʱ£¨Í¼2£©£¬ÊÔÅжϡ÷AOBµÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©Çó¡÷AOBÃæ»ýµÄ×îСֵ£®

·ÖÎö £¨1£©·Ö±ðÁîx=0£¬Çó³öyµÄÖµ¼´¿É½â¾öÎÊÌ⣮
£¨2£©¢Ù·½·¨Ò»¿ÉÒÔÓù´¹É¶¨ÀíµÄÄ涨ÀíÅжϣ®·½·¨¶þÀûÓÃÏàËÆÈý½ÇÐεÄÐÔÖÊÅжϣ¬·½·¨ÈýÀûÓÃÖ±½ÇÈý½ÇÐεÄÅж¨¶¨ÀíÅж¨£®
¢ÚÖ¤Ã÷·½·¨ÀàËÆ¢Ù
£¨3£©¸ù¾ÝS¡÷AOB=$\frac{1}{2}$¡Á4¡Á£¨|x1|+|x2|£©£¬¹¹½¨¶þ´Îº¯Êý£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖʼ´¿É½â¾öÎÊÌ⣮

½â´ð ½â£º£¨1£©Å×ÎïÏßÓëyÖáµÄ½»µã×ø±ê£¨0£¬0£©£¬Ö±ÏßÓëyÖáµÄ½»µã×ø±ê£¨0£¬4£©£®

£¨2£©¢Ùµ±m=$\frac{3}{2}$ʱ£¬Ö±ÏßΪy=$\frac{3}{2}$x+4£¬
ÓÉ$\left\{\begin{array}{l}y=\frac{1}{4}{x^2}\\ y=\frac{3}{2}x+4\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=-2}\\{y=1}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=8}\\{y=16}\end{array}\right.$£¬
µÃÁ½º¯ÊýͼÏóµÄ½»µãΪA£¨-2£¬1£©£¬B£¨8£¬16£©£¬
·Ö±ð×÷µãAºÍµãBµ½xÖáµÄ´¹Ï߶ÎAM£¬BN£¬ÔòM£¨-2£¬0£©£¬N£¨8£¬0£©£®

·½·¨Ò»£º£¨¹´¹É¶¨ÀíÄ涨Àí£©
¡ßAB2=£¨8+2£©2+16-1£©2=325£¬AO2=5£¬BO2=320£¬
¡àAO2+BO2=325=AB2£¬
¡à¡÷AOBÊÇÖ±½ÇÈý½ÇÐΣ®
·½·¨¶þ£º£¨ÏàËÆÈý½ÇÐΣ©
¡ßAM•BN=OM•ON=16£¬
¡à$\frac{AM}{ON}=\frac{OM}{BN}$£¬
¡àRt¡÷OAM¡×Rt¡÷BON£¬
¡à¡ÏAOM=¡ÏOBN£¬
¡ß¡ÏBON+¡ÏOBN=90¡ã
¡à¡ÏAOM+BON=90¡ã£¬
¡à¡ÏAOB=90¡ã£¬
¡à¡÷AOBÊÇÖ±½ÇÈý½ÇÐΣ®
·½·¨Èý£º£¨Ö±½ÇÈý½ÇÐÎÅж¨£©
ÉèA¡¢BµÄÖеãΪC£¬ÔòC£¨3£¬8.5£©
¡ßOC=$\sqrt{{3}^{2}+8£®{5}^{2}}$=$\frac{1}{2}$$\sqrt{325}$=$\frac{1}{2}$AB£¬
¡à¡÷AOBÊÇÖ±½ÇÈý½ÇÐΣ®

¢Ú·½·¨Ò»£º¡ßA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÊÇÅ×ÎïÏß$y=\frac{1}{4}{x^2}$ÓëÖ±Ïßy=mx+4µÄ½»µã£¬
ËùÒÔ£¨x1£¬y1£©£¬£¨x2£¬y2£©ÊÇ·½³Ì×é$\left\{\begin{array}{l}y=\frac{1}{4}{x^2}\\ y=mx+4\end{array}\right.$µÄÁ½¸ö½â£¬
Ò²¾ÍÊÇ˵£ºx1£¬x2ÊÇ·½³Ì$\frac{1}{4}$x2=mx+4µÄÁ½¸öʵÊý½â£¬
½«¸Ã·½³Ì¸ÄдΪx2-4mx-16=0£¬ÔòÓÐx1+x2=4m£¬x1x2=-16£¬
ÓɢٵĽâÌâ¹ý³Ì£¬ÎÒÃÇ¿ÉÒԵõ½£ºAB2=£¨x1-x2£©2+£¨y1-y2£©2£¬
¡ßA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÔÚÖ±Ïßy=mx+4ÉÏ£¬
¡ày1=mx1+4£¬y2=mx2+4£¬Ôòy1-y2=m£¨x1-x2£©£¬
¡àAB2=£¨x1-x2£©2+m2£¨x1-x2£©2=£¨1+m2£©£¨x1-x2£©2£¬
¡ßx1+x2=4m£¬x1x2=-16£¬
¡à£¨x1-x2£©2=£¨x1+x2£©2-4x1x2=16m2+64£¬
¡àAB2=£¨1+m2£©£¨16m2+64£©=16£¨1+m2£©£¨m2+4£©£»
ͬÑùµÄ£¬AO2=x12+y12=x12+£¨mx1+4£©2=£¨1+m2£©x12+8mx1+16£¬
BO2=£¨1+m2£©x22+8mx2+16£¬
AO2+BO2=[£¨1+m2£©x12+8mx1+16]+[£¨1+m2£©x22+8mx2+16]
=£¨1+m2£©£¨x12+x22£©+8m£¨x1+x2£©+32£¬
¶øx12+x22=£¨x1+x2£©2-2x1x2=16m2+32£¬
¡àAO2+BO2=£¨1+m2£©£¨16m2+32£©+8m•4m+32=16£¨1+m2£©£¨m2+2£©+32£¨m2+1£©=16£¨1+m2£©[£¨m2+2£©+2]=16£¨1+m2£©£¨m2+4£©ÔòAO2+BO2=16£¨1+m2£©£¨m2+4£©=AB2£¬
¡à¡÷AOBÊÇÖ±½ÇÈý½ÇÐΣ®
·½·¨¶þ£ºx1+x2=4m£¬x1x2=-16
¡ßy1y2=£¨mx1+4£©£¨mx2+4£©=m2x1x2=4m£¨x1+x2£©+16=m2£¨-16£©+4m•4m+16=16£¬
¡à-x1x2=y1y2=16£¬¼´AM•BN=OM•ON
¡à$\frac{AM}{ON}=\frac{OM}{BN}$£¬
¡àRt¡÷OAM¡×Rt¡÷BON£¬
¡à¡ÏAOM=¡ÏOBN£¬
¡ß¡ÏBON+¡ÏOBN=90¡ã
¡à¡ÏAOM+BON=90¡ã£¬
¡à¡ÏAOB=90¡ã£¬
¡à¡÷AOBÊÇÖ±½ÇÈý½ÇÐΣ®

·½·¨Èý£ºÉèA¡¢BµÄÖеãΪC£¬ÔòC[$\frac{1}{2}$£¨x1+x2£©£¬$\frac{1}{2}$£¨y1+y2£©]£¬¼´C£¨2m£¬2m2+4£©£¬
$OC=\sqrt{{{£¨2m£©}^2}+{{£¨2{m^2}+4£©}^2}}=2\sqrt{£¨{m^2}+1£©£¨{m^2}+4£©}=\frac{1}{2}AB$£¬
¡à¡÷AOBÊÇÖ±½ÇÈý½ÇÐΣ»

£¨3£©¡ßS¡÷AOB=$\frac{1}{2}$¡Á4¡Á£¨|x1|+|x2|£©=2$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=2$\sqrt{16{m}^{2}+64}$£¬
¡àµ±m=0ʱ£¬¡÷AOBÃæ»ýµÄ×îСֵ=16£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢Ò»´Îº¯ÊýµÄÓ¦Óᢹ´¹É¶¨ÀíÒÔ¼°¹´¹É¶¨ÀíµÄÄ涨Àí¡¢Ö±½ÇÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢ÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖʵÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÔËÓÃËùѧ֪ʶ£¬ÕÆÎÕÖ±½ÇÈý½ÇÐεÄÈýÖÖÅж¨·½·¨£¬Ñ§»áÀûÓòÎÊý½â¾öÎÊÌ⣬ѧ»á¹¹½¨¶þ´Îº¯Êý½â¾ö×îÖµÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®¼ò±ã¼ÆË㣺1.992+1.99¡Á0.01£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èçͼ£¬ABÊÇ¡ÑOµÄÖ±¾¶£¬µãDÊÇ»¡AEµÄÖе㣬AB=5£¬BD=4£¬Ôòsin¡ÏECB=$\frac{4}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÓÃÅä·½·¨½âÒ»Ôª¶þ´Î·½³Ìx2+2x-5=0£¬´Ë·½³Ì¿É±äÐÎΪ£¨¡¡¡¡£©
A£®£¨x-1£©2=6B£®£¨x+1£©2=6C£®£¨x+1£©2=4D£®£¨x-1£©2=1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®¼ÆË㣨-1£©2015-|$\sqrt{3}$-2|+£¨-$\frac{1}{3}$£©-1-2sin60¡ãµÄֵΪ-6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬¡÷ABCÖУ¬¡ÏC=90¡ã£¬AC=3£¬BC=4£®µãD´ÓCµã³ö·¢ÑØÉäÏßCAÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÔÈËÙÔ˶¯£¬Í¬Ê±µãE´ÓAµã³ö·¢ÑØABÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÏòBµãÔÈËÙÔ˶¯£¬µ±µãEµ½´ïBµãʱD¡¢E¶¼Í£Ö¹Ô˶¯£®µãMÊÇDEµÄÖе㣬ֱÏßMN¡ÍDE½»Ö±ÏßBCÓÚµãN£¬µãM¡äÓëMµã¹ØÓÚÖ±ÏßBC¶Ô³Æ£®µãD¡¢EµÄÔ˶¯Ê±¼äΪt£¨Ã룩£®
£¨1£©µ±t=1ʱ£¬AD=2£¬¡÷ADEµÄÃæ»ýΪ$\frac{4}{5}$£»
£¨2£©ÉèËıßÐÎBCDEµÄÃæ»ýΪS£¬µ±0£¼t£¼3ʱ£¬ÇóSÓëtµÄº¯Êý¹Øϵʽ£»
£¨3£©µ±¡÷MNM¡äΪµÈÑüÖ±½ÇÈý½ÇÐÎʱ£¬Çó³ötµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÏÈ»¯¼òÔÙÇóÖµ£º3a2-2£¨2a2-a£©+2£¨a2-3a+1£©£¬ÆäÖÐa=-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÏÂÁÐ˵·¨ÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$\sqrt{25}$=¡À5B£®$\sqrt{6}$ÊÇ6µÄÒ»¸öƽ·½¸ù
C£®8µÄÁ¢·½¸ùÊÇ¡À2D£®-32µÄËãÊõƽ·½¸ùÊÇ3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®¶ÔÓÚÕýÊýx£¬¹æ¶¨f£¨x£©=$\frac{1}{1+x}$£¬ÀýÈ磺f£¨4£©=$\frac{1}{1+4}$=$\frac{1}{5}$£¬f£¨$\frac{1}{4}$£©=$\frac{1}{1+\frac{1}{4}}$=$\frac{4}{5}$£¬Ôòf£¨2017£©+f£¨2016£©+¡­+f£¨2£©+f£¨1£©+f£¨$\frac{1}{2}$£©+¡­+f£¨$\frac{1}{2016}$£©+f£¨$\frac{1}{2017}$£©=$\frac{4033}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸