·ÖÎö £¨1£©·Ö±ðÁîx=0£¬Çó³öyµÄÖµ¼´¿É½â¾öÎÊÌ⣮
£¨2£©¢Ù·½·¨Ò»¿ÉÒÔÓù´¹É¶¨ÀíµÄÄ涨ÀíÅжϣ®·½·¨¶þÀûÓÃÏàËÆÈý½ÇÐεÄÐÔÖÊÅжϣ¬·½·¨ÈýÀûÓÃÖ±½ÇÈý½ÇÐεÄÅж¨¶¨ÀíÅж¨£®
¢ÚÖ¤Ã÷·½·¨ÀàËÆ¢Ù
£¨3£©¸ù¾ÝS¡÷AOB=$\frac{1}{2}$¡Á4¡Á£¨|x1|+|x2|£©£¬¹¹½¨¶þ´Îº¯Êý£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖʼ´¿É½â¾öÎÊÌ⣮
½â´ð ½â£º£¨1£©Å×ÎïÏßÓëyÖáµÄ½»µã×ø±ê£¨0£¬0£©£¬Ö±ÏßÓëyÖáµÄ½»µã×ø±ê£¨0£¬4£©£®
£¨2£©¢Ùµ±m=$\frac{3}{2}$ʱ£¬Ö±ÏßΪy=$\frac{3}{2}$x+4£¬
ÓÉ$\left\{\begin{array}{l}y=\frac{1}{4}{x^2}\\ y=\frac{3}{2}x+4\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=-2}\\{y=1}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=8}\\{y=16}\end{array}\right.$£¬
µÃÁ½º¯ÊýͼÏóµÄ½»µãΪA£¨-2£¬1£©£¬B£¨8£¬16£©£¬
·Ö±ð×÷µãAºÍµãBµ½xÖáµÄ´¹Ï߶ÎAM£¬BN£¬ÔòM£¨-2£¬0£©£¬N£¨8£¬0£©£®
·½·¨Ò»£º£¨¹´¹É¶¨ÀíÄ涨Àí£©
¡ßAB2=£¨8+2£©2+16-1£©2=325£¬AO2=5£¬BO2=320£¬
¡àAO2+BO2=325=AB2£¬
¡à¡÷AOBÊÇÖ±½ÇÈý½ÇÐΣ®
·½·¨¶þ£º£¨ÏàËÆÈý½ÇÐΣ©
¡ßAM•BN=OM•ON=16£¬
¡à$\frac{AM}{ON}=\frac{OM}{BN}$£¬
¡àRt¡÷OAM¡×Rt¡÷BON£¬
¡à¡ÏAOM=¡ÏOBN£¬
¡ß¡ÏBON+¡ÏOBN=90¡ã
¡à¡ÏAOM+BON=90¡ã£¬
¡à¡ÏAOB=90¡ã£¬
¡à¡÷AOBÊÇÖ±½ÇÈý½ÇÐΣ®
·½·¨Èý£º£¨Ö±½ÇÈý½ÇÐÎÅж¨£©
ÉèA¡¢BµÄÖеãΪC£¬ÔòC£¨3£¬8.5£©
¡ßOC=$\sqrt{{3}^{2}+8£®{5}^{2}}$=$\frac{1}{2}$$\sqrt{325}$=$\frac{1}{2}$AB£¬
¡à¡÷AOBÊÇÖ±½ÇÈý½ÇÐΣ®
¢Ú·½·¨Ò»£º¡ßA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÊÇÅ×ÎïÏß$y=\frac{1}{4}{x^2}$ÓëÖ±Ïßy=mx+4µÄ½»µã£¬
ËùÒÔ£¨x1£¬y1£©£¬£¨x2£¬y2£©ÊÇ·½³Ì×é$\left\{\begin{array}{l}y=\frac{1}{4}{x^2}\\ y=mx+4\end{array}\right.$µÄÁ½¸ö½â£¬
Ò²¾ÍÊÇ˵£ºx1£¬x2ÊÇ·½³Ì$\frac{1}{4}$x2=mx+4µÄÁ½¸öʵÊý½â£¬
½«¸Ã·½³Ì¸ÄдΪx2-4mx-16=0£¬ÔòÓÐx1+x2=4m£¬x1x2=-16£¬
ÓɢٵĽâÌâ¹ý³Ì£¬ÎÒÃÇ¿ÉÒԵõ½£ºAB2=£¨x1-x2£©2+£¨y1-y2£©2£¬
¡ßA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÔÚÖ±Ïßy=mx+4ÉÏ£¬
¡ày1=mx1+4£¬y2=mx2+4£¬Ôòy1-y2=m£¨x1-x2£©£¬
¡àAB2=£¨x1-x2£©2+m2£¨x1-x2£©2=£¨1+m2£©£¨x1-x2£©2£¬
¡ßx1+x2=4m£¬x1x2=-16£¬
¡à£¨x1-x2£©2=£¨x1+x2£©2-4x1x2=16m2+64£¬
¡àAB2=£¨1+m2£©£¨16m2+64£©=16£¨1+m2£©£¨m2+4£©£»
ͬÑùµÄ£¬AO2=x12+y12=x12+£¨mx1+4£©2=£¨1+m2£©x12+8mx1+16£¬
BO2=£¨1+m2£©x22+8mx2+16£¬
AO2+BO2=[£¨1+m2£©x12+8mx1+16]+[£¨1+m2£©x22+8mx2+16]
=£¨1+m2£©£¨x12+x22£©+8m£¨x1+x2£©+32£¬
¶øx12+x22=£¨x1+x2£©2-2x1x2=16m2+32£¬
¡àAO2+BO2=£¨1+m2£©£¨16m2+32£©+8m•4m+32=16£¨1+m2£©£¨m2+2£©+32£¨m2+1£©=16£¨1+m2£©[£¨m2+2£©+2]=16£¨1+m2£©£¨m2+4£©ÔòAO2+BO2=16£¨1+m2£©£¨m2+4£©=AB2£¬
¡à¡÷AOBÊÇÖ±½ÇÈý½ÇÐΣ®
·½·¨¶þ£ºx1+x2=4m£¬x1x2=-16
¡ßy1y2=£¨mx1+4£©£¨mx2+4£©=m2x1x2=4m£¨x1+x2£©+16=m2£¨-16£©+4m•4m+16=16£¬
¡à-x1x2=y1y2=16£¬¼´AM•BN=OM•ON
¡à$\frac{AM}{ON}=\frac{OM}{BN}$£¬
¡àRt¡÷OAM¡×Rt¡÷BON£¬
¡à¡ÏAOM=¡ÏOBN£¬
¡ß¡ÏBON+¡ÏOBN=90¡ã
¡à¡ÏAOM+BON=90¡ã£¬
¡à¡ÏAOB=90¡ã£¬
¡à¡÷AOBÊÇÖ±½ÇÈý½ÇÐΣ®
·½·¨Èý£ºÉèA¡¢BµÄÖеãΪC£¬ÔòC[$\frac{1}{2}$£¨x1+x2£©£¬$\frac{1}{2}$£¨y1+y2£©]£¬¼´C£¨2m£¬2m2+4£©£¬
$OC=\sqrt{{{£¨2m£©}^2}+{{£¨2{m^2}+4£©}^2}}=2\sqrt{£¨{m^2}+1£©£¨{m^2}+4£©}=\frac{1}{2}AB$£¬
¡à¡÷AOBÊÇÖ±½ÇÈý½ÇÐΣ»
£¨3£©¡ßS¡÷AOB=$\frac{1}{2}$¡Á4¡Á£¨|x1|+|x2|£©=2$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=2$\sqrt{16{m}^{2}+64}$£¬
¡àµ±m=0ʱ£¬¡÷AOBÃæ»ýµÄ×îСֵ=16£®
µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢Ò»´Îº¯ÊýµÄÓ¦Óᢹ´¹É¶¨ÀíÒÔ¼°¹´¹É¶¨ÀíµÄÄ涨Àí¡¢Ö±½ÇÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢ÏàËÆÈý½ÇÐεÄÅж¨ºÍÐÔÖʵÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÔËÓÃËùѧ֪ʶ£¬ÕÆÎÕÖ±½ÇÈý½ÇÐεÄÈýÖÖÅж¨·½·¨£¬Ñ§»áÀûÓòÎÊý½â¾öÎÊÌ⣬ѧ»á¹¹½¨¶þ´Îº¯Êý½â¾ö×îÖµÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | £¨x-1£©2=6 | B£® | £¨x+1£©2=6 | C£® | £¨x+1£©2=4 | D£® | £¨x-1£©2=1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\sqrt{25}$=¡À5 | B£® | $\sqrt{6}$ÊÇ6µÄÒ»¸öƽ·½¸ù | ||
C£® | 8µÄÁ¢·½¸ùÊÇ¡À2 | D£® | -32µÄËãÊõƽ·½¸ùÊÇ3 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com