分析 (1)由正方形的性质就可以得出△ADC≌△ABE,就可以得出CD=BE;
(2)在AB的外侧作AD⊥AB,使AD=AB,连结CD,BD,就可以得出△ADC≌△ABE,就有CD=BE,在Rt△CDB中由勾股定理就可以求出CD的值,进而得出结论.
解答 解:(1)CD=BE.
理由:如图①∵四边形ABFD和四边形ACGE都是正方形,
∴AD=AB,AC=AE,∠DAB=∠CAE=90°,
∴∠DAB+∠BAC=∠CAE+∠BAC,
∴∠DAC=∠BAE.
在△ADC和△ABE中,
$\left\{\begin{array}{l}{AD=AB}\\{∠DAC=∠BAE}\\{AC=AE}\end{array}\right.$,
∴△ADC≌△ABE(SAS),
∴CD=BE;
(2)如图②,在AB的外侧作AD⊥AB,使AD=AB,连结CD,BD,
∴∠DAB=90°,
∴∠ABD=∠ADB=45°.
∵∠ABC=45°,
∴∠ABD+∠ABC=45°+45°=90°,
即∠DBC=90°.
∴∠CAE=90°,
∴∠DAB=∠CAE,
∴∠DAB+∠BAC=∠CAE+∠BAC,
即∠DAC=∠BAE.
在△ADC和△ABE中
$\left\{\begin{array}{l}{AD=AB}\\{∠DAC=∠BAE}\\{AC=AE}\end{array}\right.$,
∴△ADC≌△ABE(SAS),
∴CD=BE.
∵AB=100m,在直角△ABD中,由勾股定理,得
BD=100$\sqrt{2}$.
∴CD=$\sqrt{10{0}^{2}+(100\sqrt{2})^{2}}$=100$\sqrt{3}$,
∴BE=CD=100$\sqrt{3}$,
答:BE的长为100$\sqrt{3}$米.
点评 本题考查了正方形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等腰直角三角形的性质的运用,解答时证明三角形全等是关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
日期 | 10月1日 | 10月2日 | 10月3日 | 10月4日 | 10月5日 | 10月6日 | 10月7日 |
人数变化(单位:万人) | +1.6 | +0.8 | +0.4 | -0.4 | -0.8 | +0.2 | -1.2 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 顶角相等的两个等腰三角形 | |
B. | 有两边和一角分别相等的等腰三角形 | |
C. | 各有一个角是45°,腰长都是3cm的两个等腰三角形 | |
D. | 底边和顶角都相等的两个等腰三角形 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com