【题目】如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),抛物线与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.
其中正确结论的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
【答案】C
【解析】利用抛物线的对称性得到抛物线与x轴的另一个交点在点(-2,0)和(-1,0)之间,则当x= -1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x= =1,即b= -2a,则可对②进行判断;利用抛物线的顶点的纵坐标为n得到,则可对③进行判断;由于抛物线与直线y=n有一个公共点,则抛物线与直线y= n-1有2个公共点,于是可对④进行判断.
本题解析: ∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(2,0)和(1,0)之间.∴当x=1时,y>0,即a-b+c>0,所以①正确;
∵抛物线的对称轴为直线x==1,即b=2a,∴3a+b=3a2a=a,所以②错误;
∵抛物线的顶点坐标为(1,n)∴,∴=4ac4an=4a(cn),所以③正确;
∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n1有2个公共点,
∴一元二次方程ax2+bx+c=n1有两个不相等的实数根,所以④正确。
故选C.
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过B(﹣1,0),D(﹣2,5)两点,与x轴另一交点为A,点H是线段AB上一动点,过点H的直线PQ⊥x轴,分别交直线AD、抛物线于点Q,P.
(1)求抛物线的解析式;
(2)是否存在点P,使∠APB=90°,若存在,求出点P的横坐标,若不存在,说明理由;
(3)连接BQ,一动点M从点B出发,沿线段BQ以每秒1个单位的速度运动到Q,再沿线段QD以每秒个单位的速度运动到D后停止,当点Q的坐标是多少时,点M在整个运动过程中用时t最少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一块三角板ABC的直角顶点C放在直尺的一边PQ上,直尺的另一边MN与三角板的两边AC、BC分别交于两点E、D,且AD为∠BAC的平分线,∠B=300,∠ADE=150.
(1)求∠BDN的度数;
(2)求证:CD=CE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△AED的顶点D在△ABC的BC边上,∠E=∠B,AE=AB, ∠EAB=∠DAC.
(1)求证:△AED≌△ABC.
(2)若∠E=40°,∠DAC=30°,求∠BAD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长54米的不锈钢栅栏围成,与墙平行的一边留一个宽为2米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:
(1)设AB=x米(x>0),试用含x的代数式表示BC的长;
(2)请你判断谁的说法正确,为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一条笔直的公路上有、两地,甲从地去地,乙从地去地然后立即原路返回地,返回时的速度是原来的2倍,如图是甲、乙两人离地的距离(千米)和时间(小时)之间的函数图象.
请根据图象回答下列问题:
(1)、两地的距离是 千米, ;
(2)求的坐标,并解释它的实际意义;
(3)请直接写出当取何值时,甲乙两人相距15千米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.
(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格;
(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于,求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com