【题目】如图①,中,,点从点出发沿方向匀速运动,速度为1点是上位于点右侧的动点,点是上的动点,在运动过程中始终保持,cm.过作交于,当点与点重合时点停止运动.设的而积为,点的运动时问为,与的函数关系如图②所示:
(1)=_______,=_______;
(2)设四边形的面积为,求的最大值;
(3)是否存在的值,使得以,,为顶点的三角形与相似?如果存在,求的值;如果不存在,说明理由.
【答案】(1)6,12;(2)时,有最大值16.(3)或
【解析】
(1)当t=4时,点E与C重合,此时AD=4,AC=AD+DE=4+2=6,故可求得AC=6;
由图分析当t=0时,S=2.设M到AC的距离为h,所以DEh=2,所以h=2.易求得tan∠A=2,再在Rt中,解直角三角形可以求出AC的长.
(2) 四边形的面积等于三角形MDE和三角形MNE的和,用含有t的式子表示出四边形MDEN的面积,再求最值;
(3)两个三角形中已有,如若再找到一对角相等,两三角形相似,故需分情况进行讨论:当或时,两三角形相似.
解:(1)由图可知:当t=4时,点E与C重合,此时AD=4,AC=AD+DE=4+2=6,故可求得AC=6;
当t=0时,S=2.设M到AC的距离为h,所以DEh=2,所以h=2.
∴tan∠A==2.
在Rt中,tan∠A==2.
∴BC=2AC=12.
(2)作于点,
∵,,∴,∴,
∵,
∴,
∵,,∴,
又∴,
∴,
∴四边形是矩形,
∴,
∴
,
根据题意,,
∴时,有最大值16.
(3)假设存在的值,使得以,,为顶点的三角形与相似.
∵,∴.
①当时,,∴,∴,,.
②当时,,此时,
∵,∴,∴,
∴,(舍去)
∴或时,以,,为顶点的三角形与相似.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线经过点和点.
(1)求抛物线的解析式;
(2)为抛物线上的一个动点,点关于原点的对称点为.当点落在该抛物线上时,求的值;
(3)是抛物线上一动点,连接,以为边作图示一侧的正方形,随着点的运动,正方形的大小与位置也随之改变,当顶点或恰好落在轴上时,求对应的点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.
(1)求证:四边形ACDF是平行四边形;
(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形中,平分,交于点,过点作,交的延长线于点,交的延长线于点,
(1)求证:;
(2)如图,连接、,求证平分;
(3)如图,连接交于点, 求的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一艘轮船在处测得灯塔在船的南偏东60°方向,轮船继续向正东航行30海里后到达处,这时测得灯塔在船的南偏西75°方向,则灯塔离观测点、的距离分别是( )
A.海里、15海里B.海里、15海里
C.海里、海里D.海里、海里
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1的正方形中,对角线,相交于点,点,点分别是,的中点,交于点,连接,,,得到以下四个结论:①,②,③,④,其中正确的结论是________(填写序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践:
如图1,将一个等腰直角三角尺的顶点放置在直线上,,,过点作于点,过点作于点.
观察发现:
(1)如图1.当,两点均在直线的上方时,
①猜测线段,与的数量关系,并说明理由;
②直接写出线段,与的数量关系;
操作证明:
(2)将等腰直角三角尺绕着点逆时针旋转至图2位置时,线段,与又有怎样的数量关系,请写出你的猜想,并写出证明过程;
拓广探索:
(3)将等腰直角三用尺绕着点继续旋转至图3位置时,与交于点,若,,请直接写出的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,,tanA=3,∠ABC=45°,射线BD从与射线BA重合的位置开始,绕点B按顺时针方向旋转,与射线BC重合时就停止旋转,射线BD与线段AC相交于点D,点M是线段BD的中点.
(1)求线段BC的长;
(2)①当点D与点A、点C不重合时,过点D作DE⊥AB于点E,DF⊥BC于点F,连接ME,MF,在射线BD旋转的过程中,∠EMF的大小是否发生变化?若不变,求∠EMF的度数;若变化,请说明理由.
②在①的条件下,连接EF,直接写出△EFM面积的最小值______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com