精英家教网 > 初中数学 > 题目详情
15.如图,正方形网格中小正方形的边长都为1,请在此网格中作一个直角三角形,使三角形各边的长度都是无理数.

分析 如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,使a,b,c均为无理数即可.

解答 解:如图所示,AC=BC=$\sqrt{10}$,AB=2$\sqrt{5}$,∠ACB=90°,故△ABC即为所求.

点评 本题主要考查了勾股定理的逆定理以及无理数的运用,解题时注意:首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.计算
(1)-12016+${(\frac{\sqrt{2-1}}{3})}^{0}$-${(-\frac{1}{3})}^{-1}$
(2)(-2)3×$\sqrt{{(\frac{-3}{2})}^{2}}$÷$\root{3}{-27}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,在4×4正方形网格中,黑色部分的 图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是(  )
A.$\frac{3}{13}$B.$\frac{4}{13}$C.$\frac{5}{13}$D.$\frac{6}{13}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA、OB的长满足(x-$\frac{7}{2}$)2=$\frac{1}{4}$中的x.其中OA>OB.
(1)求点D的坐标;
(2)求直线BC的解析式;
(3)在直线BC上是否存在点P,使△PCD为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.“每天锻炼一小时,健康生活一辈子”,自开展“阳光体育运动”以来,学校师生的锻炼意识都增强了.某校有学生8200人,为了解学生每天的锻炼时间,学校体育组随机调查了部分学生,统计结果如表所示.
表格中,m=30人; 这组数据的众数是14.5分钟;该校每天锻炼时间达到1小时的约有820人人.
时间段频数频率
29分钟及以下1080.54
30-39分钟240.12
40-49分钟m0.15
50-59分钟180.09
1小时及以上200.1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图所示,四边形ABCD的对角线AC、BD交于点O,若OE=OF,DF∥BE.
(1)求证:△BOE≌△DOF;
(2)求证:四边形DEBF是平行四边形;
(3)若OD=OE=OF,则四边形DEBF是什么特殊的四边形,请证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,已知直线y=-x+7与直线y=$\frac{4}{3}$x交于点A,且与x轴交于点B,过点A作AC⊥y轴与点C.点P从O点以每秒1个单位的速度沿折线O-C-A运动到A;点R从B点以相同的速度向O点运动,一个点到终点时,另一个点也随之停止运动.
(1)求点A和点B的坐标;
(2)过点R作直线l∥y轴,直线l交线段BA于点Q,设动点P运动的时间为t秒.
①当t为何值时,以A,P,O,R为顶点的四边形的面积为13?
②是否存在以A、P、R为顶点的三角形是等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,△ABC是直角三角形,∠ACB=90°,∠B=30°,以点C为旋转中心,将△ABC旋转到△A′B′C′的位置,且使A′B′经过点A.
(1)求∠ACA′的度数,判断△ACA′的形状;
(2)求线段AC与线段AB的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.一元二次方程x2-2$\sqrt{2}$x+m=0有一个实数根是$\sqrt{2}$+$\sqrt{3}$,则m的值为-1.

查看答案和解析>>

同步练习册答案