精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合).现给出以下四个结论:(1)AE=CF;(2)△EPF是等腰直角三角形;(3);(4)EF=AP.上述结论中始终正确的结论有(  )

A. 1个 B. 2个 C. 3个 D. 4个

【答案】C

【解析】根据等腰直角三角形的性质得:AP⊥BC,AP=BC,AP平分∠BAC.所以可证∠C=∠EAP;∠FPC=∠EPA;AP=PC.即证得△APE与△CPF全等.根据全等三角形性质判断结论是否正确.

解:∵∠APE、∠CPF都是∠APF的余角,∴∠APE=∠CPF,∵AB=AC,∠BAC=90°,P是BC中点,∴AP=CP,∴∠PAE=∠PCF,在△APE与△CPF中,∠PAE=∠PCF,AP=CP,∠APE=∠CPF,∴△APE≌△CPF(ASA),同理可证△APF≌△BPE,∴AE=CF,△EPF是等腰直角三角形,S四边形AEPF=S△ABC,①②③正确;而AP=BC,当EF不是△ABC的中位线时,则EF不等于BC的一半,EF=AP,∴故④不成立,

故选C.

“点睛”本题主要考查了等腰直角三角形的判定及性质的运用,三角形的中位线的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若关于x的方程x2-bx+6=0的一根是x=2,则另一根是(  )

A.x=-3B.x=-2C.x=2D.x=3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示:∠ABC的平分线BF△ABC∠ACB的相邻外角的平分线CF相交于点F,过FDF∥BC,交ABD,交ACE

问:(1)图中有几个等腰三角形?为什么?

2BDCEDE之间存在着什么关系?请证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一组数据2、5、4、3、5、4、5的中位数和众数分别是(  )
A.3.5,5
B.4,4
C.4,5
D.4.5,4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a,b,c是三角形ABC的三边,且b2+2ab=c2+2ac,则三角形ABC的形状是三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,∠B=90 ,AB=8cm,BC=6cm,PQ是△ABC边上的两个动点,其中点P从点A开始沿AB方向运动,且速度为每秒1cm,点Q从点B开始沿BCA方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.

(1)出发2秒后,求线段PQ的长?

(2)当点Q在边BC上运动时,出发几秒钟后,△PQB是等腰三角形?

(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016湖南省岳阳市第24题)如图,直线y=x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).

(1)求抛物线F1所表示的二次函数的表达式;

(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和BOC的面积分别为S四边形MAOC和SBOC,记S=S四边形MAOCSBOC,求S最大时点M的坐标及S的最大值;

(3)如图,将抛物线F1沿y轴翻折并复制得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A、B、M,过点M作MEx轴于点E,交直线AC于点D,在x轴上是否存在点P,使得以A、D、P为顶点的三角形与ABC相似?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016广西省贺州市第26题)如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.

(1)求此抛物线的解析式;

(2)求AD的长;

(3)点P是抛物线对称轴上的一动点,当PAD的周长最小时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知C是AB的中点,D是AC的中点,E是BC的中点.

(1)若AB=18cm,求DE的长;(2)若CE=5cm,求DB的长.

查看答案和解析>>

同步练习册答案