精英家教网 > 初中数学 > 题目详情

【题目】如图,测得某楼梯的长为5m,高为3m,宽为2m,计划在表面铺地毯,若每平方米地毯50元,你能帮助算出至少需要多少钱吗?

【答案】至少需要700元.

【解析】

试题将每阶楼梯的横向线段和纵向线段分别向下和向右平移,则横向线段和纵向线段的和分别为直角三角形的两直角边长,根据勾股定理求得直角三角形下面直角边的长为4m,则楼梯表面所铺地毯是一个长为(4+3)m,宽为2m的长方形,据此即可计算出答案.

试题解析:

解:由勾股定理得:直角三角形下面直角边长为=4m,

将每阶楼梯的横向线段和纵向线段分别向下和向右平移,则横向线段和纵向线段的和分别为直角三角形的两直角边长,

∴地毯的长度为437m),地毯的面积为:7×214m2),

即:至少要购买地毯14平方米.

需要的费用为:14×50700(元).

答:至少需要700元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于x的一次函数y=mx+2的图象经过点(﹣2,6).

(1)求m的值;

(2)画出此函数的图象;

(3)平移此函数的图象,使得它与两坐标轴所围成的图形的面积为4,请直接写出此时图象所对应的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为迎接五一节,重百超市计划销售枇杷和樱桃两种水果共5000千克,若枇杷的数量是樱桃的2倍少1000千克.

1)超市计划销售枇杷多少千克?

2)若超市从某一果园直接进货,果园共30名员工负责采摘这两种水果,每人每天能够采摘30千克枇杷或10千克樱桃,应分别安排多少人采摘枇杷和樱桃,才能确保采摘两种水果所用的时间相同?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知平行四边形ABCD中,对角线AC,BD交于点O,EBD延长线上的点,且△ACE是等边三角形.

(1)求证:四边形ABCD是菱形;

(2)若∠AED=2EAD,求证:四边形ABCD是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:

污水处理设备

A型

B型

价格(万元/台)

m

m-3

月处理污水量(吨/台)

220

180

(1)求m的值;

(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第五个图形需要黑色棋子的个数是 ,第n个图形需要黑色棋子的个数是 (n≥1,且n为整数).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是一个长为2a ,宽为2b的长方形,沿图中虚线剪开分成四块小长方形,然后按如图2的形状拼成一个正方形.

1)图2的阴影部分的正方形的边长是 ______

2)用两种不同的方法求图中阴影部分的面积.

(方法1= _____________

(方法2=______________

3)观察如图2,写出(a+b2,(a-b2ab这三个代数式之间的等量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在梯形中,,点在直线上,联结,过点的垂线,交直线与点

1)如图1,已知,:求证:

2)已知:

当点在线段上,求证:

当点在射线上,①中的结论是否成立?如果成立,请写出证明过程;如果不成立,简述理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,过点DDEAB于点E,点FCD上,CF=AE连接BFAF

1)求证:四边形BFDE是矩形;

2)若AF平分∠BAD,且AE=3DE=4,求矩形BFDE的面积.

查看答案和解析>>

同步练习册答案