精英家教网 > 初中数学 > 题目详情

【题目】如图,将边长为3的正方形纸片ABCD对折,使ABDC重合,折痕为EF,展平后,再将点B折到边CD上,使边AB经过点E,折痕为GH,点B的对应点为M,点A的对应点为N,那么折痕GH的长为_____

【答案】

【解析】

利用翻折变换的性质结合勾股定理表示出CH的长,得出△EDM∽△MCH,进而求出MC的长,依据△GPH≌△BCM,可得GHBM,再利用勾股定理得出BM,即可得到GH的长.

CMx,设HCy,则BHHM3y

y2+x2=(3y2

整理得:y=﹣x2+

CH=﹣x2+

∵四边形ABCD为正方形,

∴∠B=∠C=∠D90°,

由题意可得:ED1.5DM3x,∠EMH=∠B90°,

故∠HMC+∠EMD90°,

∵∠HMC+∠MHC90°,

∴∠EMD=∠MHC

∴△EDM∽△MCH

解得:x11x23(不合题意),

CM1

如图,

连接BM,过点GGPBC,垂足为P,则BMGH

∴∠PGH=∠HBM

在△GPH和△BCM

∴△GPH≌△BCMSAS),

GHBM

GHBM

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图像如图所示,则超过500元的部分可以享受的优惠是( )

A. 打六折B. 打七折C. 打八折D. 打九折

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,有下列结论:①∠AED=∠CED;②OE=OD;③△BEH≌△HDF;④BC﹣CF=2EH;⑤AB=FH.其中正确的结论有(  )

A. 5个 B. 4个 C. 3个 D. 2个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,一次函数ykx+b(k≠0)的图象与反比例函数y (n≠0)的图象交于第二、四象限内的AB两点,与x轴交于点C,点B 坐标为(m,﹣1)ADx轴,且AD3tanAOD

(1)求该反比例函数和一次函数的解析式;

(2)求△AOB的面积;

(3)Ex轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】南浔区某科技开发公司研制出一种新型的产品,每件产品的成本为1200元,销售单价定为1700元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按1700元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于1400元.

1)若顾客一次购买这种产品6件时,则公司所获得的利润为 元?

2)顾客一次性购买该产品至少多少件时,其销售单价为1400元;

3)经过市场调查,该公司的销售人员发现:当一次性购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况.设一次性购买该产品x件,公司所获得的利润为y

①请你通过分析求出此时y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围;

②为使顾客一次性购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为 元?(其它销售条件不变)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:

(1)学校这次调查共抽取了   名学生;

(2)补全条形统计图;

(3)在扇形统计图中,戏曲所在扇形的圆心角度数为   

(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中点A坐标为(2,﹣4),以A为顶点的抛物线经过坐标原点交x轴于点B

(1)求抛物线的解析式;

(2)取线段AB上一点D,以BD为直径作⊙Cx轴于点E,作EFAO于点F

求证:EF是⊙C的切线;

(3)设⊙C的半径为rEFm,求mr的函数关系式及自变量r的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线yx分别与双曲线yy交于第一象限内的点AB,且OA2AB,将直线yx向左平移4个单位后,分别与x轴,y轴交于点DE,与双曲线y交于点COBC的面积为3

1)求mn的值;

2)点C到直线AB的距离是   

查看答案和解析>>

同步练习册答案