精英家教网 > 初中数学 > 题目详情
如图,△ABC中,∠A=90°,BC=2cm,分别以点B、C为圆心的两个等圆相外切,求两个图中两个阴影扇形的面积之和.

【答案】分析:两个圆半径已知,关键是求出圆心角度数之和,由于∠A=90°,因此两扇形的圆心角的度数和为90°,据此可求出阴影部分的面积.
解答:解:∵∠A=90°,∴∠B+∠C=90°;
所以图中阴影部分面积为(cm2).
点评:本题主要考查了扇形的面积公式及三角形内角和定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案