精英家教网 > 初中数学 > 题目详情

【题目】如图, 在Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为__________

【答案】

【解析】试题分析:根据折叠的性质可知CD=AC=3B′C=BC=4∠ACE=∠DCE∠BCF=∠B′CFCE⊥AB

∴B′D=4﹣3=1∠DCE+∠B′CF=∠ACE+∠BCF

∵∠ACB=90°

∴∠ECF=45°

∴△ECF是等腰直角三角形,

∴EF=CE∠EFC=45°

∴∠BFC=∠B′FC=135°

∴∠B′FD=90°

SABC=ACBC=ABCE

∴ACBC=ABCE

根据勾股定理求得AB=5

CE=

EF=ED=AE=

DF=EF﹣ED=

B′F=

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在二元一次方程x+3y=8的解中,当x=2时,对应的y的值是____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分解因式:a2a2+a3=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算正确的是( ).

A.x2x=x2 B.3x2x2=2x2

C.(3x)2=6x2 D.x8÷x4=x2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点PQ分别是边长为4cm的等边△ABC的边ABBC上的动点(其中PQ不与端点重合),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQCP交于点M,则在PQ运动的过程中,下列结论:(1BP=CM;(2△ABQ≌△CAP;(3∠CMQ的度数始终等于60°;(4)当第秒或第秒时,△PBQ为直角三角形.其中正确的结论有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列每组数分别是三根木棒的长度,能用它们摆成三角形的是(  )

A. 3cm4cm8cm B. 8cm7cm15cm

C. 5cm5cm11cm D. 13cm12cm20cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是O的直径,弦BC=4cm,F是弦BC的中点,ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B方向运动,设运动时间为t(秒),连结EF,当t值为 秒时,BEF是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点BDBFa于点FDEa于点E,若DE=8BF=5,则EF的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图(1),已知:在ABC中,BAC=90°AB=AC,直线m经过点ABD直线mCE直线m,垂足分别为点DE.猜测DEBDCE三条线段之间的数量关系(直接写出结果即可).

2)如图(2),将(1)中的条件改为:在ABC中,AB=ACDAE三点都在直线m上,并且有BDA=AEC=BAC=α,其中α为任意锐角或钝角.请问第(1)题中DEBDCE之间的关系是否仍然成立?如成立,请你给出证明;若不成立,请说明理由.

3)拓展与应用:如图(3),DEDAE三点所在直线m上的两动点(DAE三点互不重合),点FBAC平分线上的一点,且ABFACF均为等边三角形,连接BDCE,若BDA=AEC=BAC,试判断线段DFEF的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案