精英家教网 > 初中数学 > 题目详情
已知平面直角坐标系xOy中,点A在抛物线y=
2
3
3
x2+
3
3
上,过A作AB⊥x轴于点B,AD⊥y轴于点D,将矩形ABOD沿对角线BD折叠后得A的对应点为A′,重叠部分(阴影)为△BDC.
(1)求证:△BDC是等腰三角形;
(2)如果A点的坐标是(1,m),求△BDC的面积;
(3)在(2)的条件下,求直线BC的解析式,并判断点A′是否落在已知的抛物线上?请说明理由.
(1)证明:由折叠的性质之:∠ABD=∠DBC,
∵四边形ABOD是矩形
∴ABDO
∴∠ABD=∠CDB
∴∠CBD=∠BDC
∴△BDC是等腰三角形.

(2)∵点A(1,m)在y=
2
3
3
x2+
3
3
上,
∴m=
2
3
3
+
3
3
=
3

在直角三角形ABD中,AB=
3
,DA=1,
∴∠ABD=30°,
∴∠CBO=30°,CO=OB•tan∠CBO=
3
3

S△BCD=S△BDO-S△BCO=
1
2
OD•OB-
1
2
OB•OC=
3
2
-
1
2
×
3
3
=
3
3


(3)设直线BC解析式为:y=ax+b,
∵C(0,
3
3
),B(1,0);
b=
3
3
a+b=0

解得
a=-
3
3
b=
3
3

y=-
3
x
3
+
3
3

设A′的坐标为(x,y),过A′作A′M⊥x轴于M,
A′M=
1
2
BA′=
1
2
AB=
3
2

∴y=
3
2

代入y=-
3
x
3
+
3
3

得x=-
1
2

点A′的坐标是(-
1
2
3
2
),
将x=-
1
2
代入y=
2
3
3
x2+
3
3

得:y=
3
2

∴A′落在此抛物线上.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,把△OAB放置于平面直角坐标系xOy中,∠OAB=90°,OA=2,AB=
3
2
,把△OAB沿x轴的负方向平移2OA的长度后得到△DCE.
(1)若过原点的抛物线y=ax2+bx+c经过点B、E,求此抛物线的解析式;
(2)若点P在该抛物线上移动,当点P在第一象限内时,过点P作PQ⊥x轴于点Q,连结OP.若以O、P、Q为顶点的三角形与以B、C、E为顶点的三角形相似,直接写出点P的坐标;
(3)若点M(-4,n)在该抛物线上,平移抛物线,记平移后点M的对应点为M′,点B的对应点为B′.当抛物线向左或向右平移时,是否存在某个位置,使四边形M′B′CD的周长最短?若存在,求出此时抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,己知点P是x轴上一点,以P为圆心的⊙P分别与x轴、y轴交于点A、B和C、D,其中A(-3,0),B(1,0).过点C作⊙P的切线交x轴于点E.
(1)求直线CE的解析式;
(2)求过A、B、C三点的抛物线解析式;
(3)第(2)问中的抛物线的顶点是否在直线CE上,请说明理由;
(4)点F是线段CE上一动点,点F的横坐标为m,问m在什么范围内时,直线FB与⊙P相交?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

矩形ABCD的边长AB=3,AD=2,将此矩形放在平面直角坐标系中,使AB在x轴的正半轴上,点A在点B的左侧,另两个顶点都在第一象限,且直线y=
3
2
x-1
经过这两个顶点中的一个.
(1)求A、B、C、D四点坐标;
(2)以AB为直径作⊙M,记过A、B两点的抛物线y=ax2+bx+c的顶点为P.
①若P点在⊙M和矩形内,求a的取值范围;
②过点C作CF切⊙M于E,交AD于F,当PFAB时,求抛物线的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图象的一部分,如图所示,如果这个男同学的出手处A点的坐标(0,2),铅球路线的最高处B点的坐标为(6,5).
(1)求这个二次函数的解析式;
(2)该男同学把铅球推出去多远?(精确到0.01米,
15
=3.873)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象经过点A(0,-3),且顶点P的坐标为(1,-4),
(1)求这个函数的关系式;
(2)在平面直角坐标系中,画出它的图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-
1
2
x2+
1
2
x+6与x轴交于A、B两点,与y轴相交于C点.
(1)求△ABC的面积;
(2)已知E点(0,-3),在第一象限的抛物线上取点D,连接DE,使DE被x轴平分,试判定四边形ACDE的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=-
1
2
x2+4x+c的图象经过坐标原点,并且与函数y=
1
2
x的图象交于O、A两点.
(1)求c的值;
(2)求A点的坐标;
(3)若一条平行于y轴的直线与线段OA交于点F,与这个二次函数的图象交于点E,求线段EF的最大长度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).
(1)求y与x之间的函数关系式;
(2)设公司获得的总利润(总利润=总销售额-总成本)为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;根据题意判断:当x取何值时,P的值最大,最大值是多少?

查看答案和解析>>

同步练习册答案