精英家教网 > 初中数学 > 题目详情
如图,点A、B是⊙O上两点,AB=12,点P是⊙O上的动点(P与A,B不重合)连结AP,PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF=      。
6

试题分析:点P是⊙O上的动点(P与A,B不重合),但不管点P如何动,因为OE⊥AP于E,OF⊥PB于F,根据垂径定理,E为AP中点,F为PB中点,EF为△APB中位线.根据三角形中位线定理,EF=AB=×12=6.
点评:此题是一道动点问题.解答此类问题的关键是找到题目中的不变量.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知⊙与⊙相交于两点,点在⊙上,为⊙上一点(不与重合),直线与⊙交于另一点

(1)如图(1),若是⊙的直径,求证:;(4分)
(2)如图(2),若是⊙外一点,求证:;(4分)
(3)如图(3),若是⊙内一点,判断(2)中的结论是否成立。(3分)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知OA、OB是⊙O的两条半径,且OA⊥BC,C为OB延长线上任意一点,过点C作CD切⊙O于点D,连接AD,交OC过于点E。

(1)求证:CD=CE;
(2)若将图1中的半径OB所在的直线向上平行移动,交⊙O于,其他条件不变,如图2,那么上述结论CD=CE还成立吗?为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=2,ED=4,

(1)求证:△ABE∽△ADB;
(2)求AB的长;
(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

两圆半径R、r分别是方程的两根,且圆心距,则两圆的位置关系是(    )
A.外离B.外切C.内含D.外离或内含

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

两圆半径分别是方程的两根,当圆心距等于5时,两圆的位置关系是(    )。
A.相交。B.外离。C.外切。D.内切。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点A在半径为3的⊙O内,OA=,P为⊙O上一点,当∠OPA取最大值时,PA的长等于(      )

A.        B.      C.    B.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在等边△ABC中,AD⊥BC于点D,一个直径与AD相等的圆与BC相切于点E,与AB相切于点F,连接EF。

(1)判断EF与AC的位置关系(不必说明理由);;
(2)如图(2),过E作BC的垂线,交圆于G,连接AG,判断四边形ADEG的形状,并说明理由。
(3)求证:AC与GE的交点O为此圆的圆心.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,AB是直径,于点,且交于点,若

(1)判断直线的位置关系,并给出证明;
(2)当时,求的长.

查看答案和解析>>

同步练习册答案