A. | $4\sqrt{5}$ | B. | 4 | C. | $8\sqrt{5}$ | D. | 8 |
分析 根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8-4=4,当直线经过D点,设交AB与N,则DN=2$\sqrt{2}$,作DM⊥AB于点M.利用三角函数即可求得DM即平行四边形的高,然后利用平行四边形的面积公式即可求解.
解答 解:根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,
则AB=8-4=4,
如图1,
当直线经过D点,设交AB与N,则DN=2$\sqrt{2}$,作DM⊥AB于点M.
∵y=-x与x轴形成的角是45°,
又∵AB∥x轴,
∴∠DNM=45°,
∴DM=DN•sin45°=2$\sqrt{2}$×$\frac{\sqrt{2}}{2}$=2,
则平行四边形的面积是:AB•DM=4×2=8.
故选:D.
点评 本题考查了函数的图象,根据图象理解AB的长度,正确求得平行四边形的高是关键.
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 18m | B. | 16m | C. | 14m | D. | 12m |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | y1>y2 | B. | y1<y2 | C. | y1=y2 | D. | 以上都不对 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com