精英家教网 > 初中数学 > 题目详情
如图,在四边形ABCD中,AD=4cm,CD=3cm,AD⊥CD,AB=13cm,BC=12cm,求四边形的面积.
精英家教网
分析:连接AC,根据勾股定理求出AC,然后利用勾股定理的逆定理推导出△ABC是直角三角形,然后利用三角形面积公式将两个三角形的面积相加即可.
解答:解:精英家教网连接AC,
∵AD⊥CD
∴在直角△ACD中,AC2=AD2+CD2=42+32=25
解得AC=5cm
∵AC2+BC2=52+122=169=132=AB2
∴∠ACB=90°
∴S四边形ABCD=S△ACD+S△ABC
=
1
2
AD•CD+
1
2
AC•BC
=6+30
=36(cm2).
答:四边形的面积为36cm2
点评:此题主要考查学生对勾股定理和勾股定理的逆定理的理解和掌握,此题的关键是利用勾股定理的逆定理推导出△ABC是直角三角形,然后将两个三角形的面积相加即可.此题难度不大,属于中档题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠BAC=90°,将△ABC沿线段BC向右平移得到△DEF,使CE=AE,连结AD、AE、CD,则下列结论:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四边形AECD为菱形,其中正确的共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源:浙江省同步题 题型:证明题

已知:如图,在四边形ABC中,AD=BC,AB=CD.求证:AB∥CD,AD∥BC.

查看答案和解析>>

同步练习册答案