精英家教网 > 初中数学 > 题目详情
如图,已知平面直角坐标系xoy中,有一矩形纸片OABC,O为坐标原点,AB∥x轴,B(3,),现将纸片按如图折叠,AD,DE为折痕,∠OAD=30度.折叠后,点O落在点O1,点C落在线段AB点C1处,并且DO1与DC1在同一直线上.
(1)求折痕AD所在直线的解析式;
(2)求经过三点O,C1,C的抛物线的解析式;
(3)若⊙P的半径为R,圆心P在(2)的抛物线上运动,⊙P与两坐标轴都相切时,求⊙P半径R的值.

【答案】分析:(1)根据B点的坐标即可得出A点的坐标,也就知道了OA的长,可在直角三角形OAD中,根据OA的长和∠OAD的度数求出OD的长,即可得出D点的坐标,进而可用待定系数法求出直线AD的解析式.
(2)本题的关键是求出C1的横坐标,可过C1作x轴的垂线,由于∠ADO=∠AOC1=60°,因此可得出∠C1DC=60°,因此可在构建的直角三角形中用BC的长和∠C1DC的度数来求出C1的坐标,进而可用待定系数法求出抛物线的解析式.
(3)由于圆P与两坐标轴都相切,如果设P点的坐标为(x、y),则有|x|=|y|,进而可联立抛物线的解析式求出P点的坐标.也就得出了圆的半径的长.
解答:解:(1)由已知得
OA=,∠OAD=30度.
∴OD=OA•tan30°==1,
∴A(0,),D(1,0)
设直线AD的解析式为y=kx+b.
把A,D坐标代入上式得:

解得:
折痕AD所在的直线的解析式是y=-x+

(2)过C1作C1F⊥OC于点F,
由已知得∠ADO=∠ADO1=60°,
∴∠C1DC=60°.
又∵DC=3-1=2,
∴DC1=DC=2.
∴在Rt△C1DF中,C1F=DC1•sin∠C1DF=2×sin60°=
则DF=DC1=1,
∴C1(2,),而已知C(3,0).
设经过三点O,C1,C的抛物线的解析式是y=ax2+bx+c,(a≠0).
把O,C1,C的坐标代入上式得:
解得
∴y=-x2+x为所求.

(3)设圆心P(x,y),则当⊙P与两坐标轴都相切时,有y=±x.
由y=x,得-x2+x=x,解得x1=0(舍去),
由y=-x,得-x2+x=-x解得x1=0(舍去),
∴所求⊙P的半径R=3-或R=3+
点评:本题主要考查了二次函数解析式的确定、矩形的性质、解直角三角形、切线的性质等知识点.综合性较强.
练习册系列答案
相关习题

科目:初中数学 来源:2012年初中毕业升学考试(四川巴中卷)数学(解析版) 题型:解答题

如图,在平面直角坐标系中,一次函数的图象与y轴交于点A,

与x轴交于点B,与反比例函数的图象分别交于点M,N,已知△AOB的面积为1,点M的纵坐

标为2,

(1)求一次函数和反比例函数的解析式;

(2)直接写出时x的取值范围。

 

查看答案和解析>>

科目:初中数学 来源:2013届安徽滁州八年级下期末模拟数学试卷(沪科版)(解析版) 题型:解答题

已知:如图1,平面直角坐标系中,四边形OABC是矩形,点A,C的坐

标分别为(6,0),(0,2).点D是线段BC上的一个动点(点D与点B,C不重合),过点D作直线=-交折线O-A-B于点E.

(1)在点D运动的过程中,若△ODE的面积为S,求S与的函数关系式,并写出自变量的取值范围;

(2)如图2,当点E在线段OA上时,矩形OABC关于直线DE对称的图形为矩形O′A′B′C′,C′B′分别交CB,OA于点D,M,O′A′分别交CB,OA于点N,E.求证:四边形DMEN是菱形;

(3)问题(2)中的四边形DMEN中,ME的长为____________.

    

 

查看答案和解析>>

同步练习册答案