精英家教网 > 初中数学 > 题目详情
如图,点A是正比例函数y=-x与反比例函数y=
kx
在第二象限的交点,AB⊥OA交x轴于点B,△AOB的面积为4,则k的值是
-4
-4
分析:过点A作AC⊥OB于C,先由正比例函数的性质及AB⊥OA,得出△AOB是等腰直角三角形,根据等腰三角形三线合一的性质得出BC=OC,则S△AOC=
1
2
S△AOB=2,再根据反比例函数的性质可以得到△AOC的面积等于|k|的一半,由此求解即可.
解答:解:过点A作AC⊥OB于C.
∵点A是正比例函数y=-x与反比例函数y=
k
x
在第二象限的交点,AB⊥OA交x轴于点B,
∴△AOB是等腰直角三角形,
∴BC=OC,
∴S△AOC=
1
2
S△AOB=2,即
1
2
|k|=2,
∴k=±4,
∵反比例函数y=
k
x
的图象在在第二象限,
∴k<0,
∴k=-4.
故答案为-4.
点评:本题考查反比例系数k的几何意义,过双曲线上的任意一点分别向两条坐标作垂线,与坐标轴围成的矩形面积就等于|k|.该知识点是中考的重要考点,同学们应高度关注.同时考查了正比例函数的性质,等腰三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax2+bx+c的图象经过三点A(-1,0),B(3,0),C(0,3),它的精英家教网顶点为M,又正比例函数y=kx的图象于二次函数相交于两点D、E,且P是线段DE的中点.
(1)求该二次函数的解析式,并求函数顶点M的坐标;
(2)已知点E(2,3),且二次函数的函数值大于正比例函数时,试根据函数图象求出符合条件的自变量x的取值范围;
(3)0<k<2时,求四边形PCMB的面积s的最小值.
【参考公式:已知两点D(x1,y1),E(x2,y2),则线段DE的中点坐标为(
x1+x2
2
y1+y2
2
)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知正比例函数y=ax(a≠0)的图象与反比例函致y=
kx
(k≠0)的图象的一个交点为A(-1,2-k2),另一个交点为B,且A、B关于原点O对称,D为OB的中点,过点D的线段OB的垂直平分线与x轴、y轴分别交于C、E.
(1)写出反比例函数和正比例函数的解析式;
(2)试计算△COE的面积是△ODE面积的多少倍?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax2+bx+c的图象经过三点A(-1,0),B(3,0),C(0,3),它的顶点为M,又正比例函数y=kx的图象与二次函数相交于两点D、E,且P是线段DE的中点.
(1)求该二次函数的解析式,并求函数顶点M的坐标;
(2)已知点E(2,3),且二次函数的函数值大于正比例函数值时,试根据函数图象求出符合条件的自变量x的取值范围;
(3)当k为何值时且0<k<2,求四边形PCMB的面积为
93
16

(参考公式:已知两点D(x1,y1),E(x2,y2),则线段DE的中点坐标为(
x1+x2
2
y1+y2
2
)

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(35):2.7 最大面积是多少(解析版) 题型:解答题

如图,已知二次函数y=ax2+bx+c的图象经过三点A(-1,0),B(3,0),C(0,3),它的顶点为M,又正比例函数y=kx的图象于二次函数相交于两点D、E,且P是线段DE的中点.
(1)求该二次函数的解析式,并求函数顶点M的坐标;
(2)已知点E(2,3),且二次函数的函数值大于正比例函数时,试根据函数图象求出符合条件的自变量x的取值范围;
(3)0<k<2时,求四边形PCMB的面积s的最小值.
【参考公式:已知两点D(x1,y1),E(x2,y2),则线段DE的中点坐标为

查看答案和解析>>

科目:初中数学 来源:2010年高级中等学校招生全国统一考试数学卷(辽宁沈阳) 题型:解答题

如图,已知正比例函数y = axa≠0)的图象与反比例函致k≠0)的图象的一个交点为A(-1,2-k2),另—个交点为B,且AB关于原点O对称,DOB的中点,过点D的线段OB的垂直平分线与x轴、y轴分别交于CE

(1)写出反比例函数和正比例函数的解析式;

(2)试计算△COE的面积是△ODE面积的多少倍.

 

查看答案和解析>>

同步练习册答案