【题目】阅读材料:
小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如.善于思考的小明进行了以下探索:
设(其中、、、均为整数),则有.
∴,.这样小明就找到了一种把类似的式子化为平方式的方法.
请你仿照小明的方法解决下列问题:
(1)当、、、均为正整数时,若,用含、的式子分别表示、,得_________,_________.
(2)利用所探索的结论,填空:(_____+_____)2;
(3)若,且、、均为正整数,求的值?
【答案】(1)m2+3n2,2mn;(2)1,2;(3)a的值为12或28
【解析】
(1)利用完全平方公式展开得到(m+n)2=m2+3n2+2mn,从而可用m、n表示a、b;
(2)根据a=13,b=4得到m=1,n=2,然后填空即可;
(3)由a=m2+3n2,2mn=6和a、m、n均为正整数可确定m、n的值,再计算对应的a的值.
解:(1)(m+n)2=m2+3n2+2mn,
∴a=m2+3n2,b=2mn;
(2)∵a=13,b=4,
∴m2+3n2=13,4=2mn,
∴m=1,n=2,
∴13+4=(1+2)2,
(3)a=m2+3n2,2mn=6,
∵a、m、n均为正整数,
∴m=3,n=1或m=1,n=3,
当m=3,n=1时,a=9+3=12,
当m=1,n=3时,a=1+3×9=28,
∴a的值为12或28.
故答案为m2+3n2,2mn;1,2.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中AB=AC.
(1)作图:在AC上有一点D,延长BD,并在BD的延长线上取点E,使AE=AB,连AE,作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);
(2)在(1)的条件下,连接CF,求证:∠BAC=∠BFC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】本学期学习了分式方程的解法,下面是晶晶同学的解题过程:
解方程
解:整理,得: …………………………第①步
去分母,得: …………………………第②步
移项,得: ……………………… 第③步
合并同类项,得: ……………………… 第④步
系数化1,得: …………………………第⑤步
检验:当时,
所以原方程的解是. ………………………第⑥步
上述晶晶的解题过程从第_____步开始出现错误,错误的原因是_________________.请你帮晶晶改正错误,写出完整的解题过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.
(1)求证:AF+EF=DE;
(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;
(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.
(1)求BD的长;
(2)求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA.
(1)求证:∠BAD=∠EDC;
(2)作出点E关于直线BC的对称点M,连接DM、AM,猜想DM与AM的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店将每件进价元的某种商品按每件元出售,一天可销出约件,该店想通过降低售价,增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低元,其销售量可增加约件.
将这种商品每件的售价降低多少时,能使商店的销售利润为元?
这种商品的售价降低多少时,才能使商店的销售利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,他们的运动时间为t(s).
(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由
(2)判断此时线段PC和线段PQ的关系,并说明理由。
(3)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变,设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com