【题目】如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D点,连接CD.
(1)求证:∠A=∠BCD;
(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.
【答案】
(1)证明:∵AC为直径,
∴∠ADC=90°,
∴∠A+∠DCA=90°,
∵∠ACB=90°,
∴∠DCB+∠ACD=90°,
∴∠DCB=∠A
(2)当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切;
解:连接DO,
∵DO=CO,
∴∠1=∠2,
∵DM=CM,
∴∠4=∠3,
∵∠2+∠4=90°,
∴∠1+∠3=90°,
∴直线DM与⊙O相切,
故当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切.
【解析】(1)根据圆周角定理可得∠ADC=90°,再根据直角三角形的性质可得∠A+∠DCA=90°,再由∠DCB+∠ACD=90°,可得∠DCB=∠A;(2)当MC=MD时,直线DM与⊙O相切,连接DO,根据等等边对等角可得∠1=∠2,∠4=∠3,再根据∠ACB=90°可得∠1+∠3=90°,进而证得直线DM与⊙O相切.
【考点精析】关于本题考查的切线的判定定理,需要了解切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴交于点C(0,4).
(1)求直线BC与抛物线的解析式;
(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,当 MN的值最大时,求△BMN的周长.
(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1 , △ABN的面积为S2 , 且S1=4S2 , 求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=90°,AB=4,BC=3,将△ABC绕点A逆时针旋转,使点B落在线段AC上的点D处,点C落在点E处,则C、E两点间的距离为( )
A.
B.2
C.3
D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解题:我们知道一元二次方程是转化为一元一次方程来解的,例如:解方程x2﹣2x=0,通过因式分解将方程化为x(x﹣1)=0,从而得到x=0或x﹣2两个一元一次方程,通过解这两个一元一次方程,求得原方程的解.
(1)利用上述方法解一元二次不等式:2x(x﹣1)﹣3(x﹣1)<0;
(2)利用函数的观点解一元二次不等式x2+6x+5>0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b),(m≠1的实数).
其中正确的结论有(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某兴趣小组用仪器测测量湛江海湾大桥主塔的高度.如图,在距主塔从AE60米的D处.用仪器测得主塔顶部A的仰角为68°,已知测量仪器的高CD=1.3米,求主塔AE的高度(结果精确到0.1米)
(参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6 ,则另一直角边BC的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校计划在七年级学生中开设4个信息技术应用兴趣班,分别为“无人机”班,“3D打印”班,“网页设计”班,“电脑绘画”班,规定每人最多参加一个班,自愿报名.根据报名情况绘制了下面统计图表,请回答下列问题:
七年级兴趣班报名情况统计表
(1)报名参加兴趣班的总人数为人;统计表中的a=;
(2)将统计图补充完整;
(3)为了均衡班级人数,在“电脑绘画”班中至少动员几人到“3D打印”班,才能使“电脑绘画”班人数不超过“3D打印”班人数的2倍?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com