精英家教网 > 初中数学 > 题目详情
5.在-$\frac{5}{3}$,-$\sqrt{2}$,-$\sqrt{3}$,-$\frac{π}{2}$四个数中,最大的数是(  )
A.-$\frac{5}{3}$B.-$\sqrt{2}$C.-$\sqrt{3}$D.-$\frac{π}{2}$

分析 首先求得各数绝对值的近似值,然后由两个负实数绝对值大的反而小,求得答案.

解答 解:∵$\frac{5}{3}$≈1.67,$\sqrt{2}$≈1.414,$\sqrt{3}$≈1.732,$\frac{π}{2}$≈1.57,
∴在-$\frac{5}{3}$,-$\sqrt{2}$,-$\sqrt{3}$,-$\frac{π}{2}$四个数中,最大的数是:-$\sqrt{2}$.
故选B.

点评 此题考查了实数的大小比较.注意两个负实数绝对值大的反而小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.为了提高足球基本功,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传三次.
(1)请用树状图列举出三次传球的所有可能情况;
(2)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,点E是?ABCD的边AD上一点,连接CE并延长交BA的延长线于点F,若BG=DE,并且∠AEF=70°.求∠AGB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数的图象相交于点A、B,点A的坐标为(2,3),点B的横坐标为6.
(1)求反比例函数与一次函数的解析式;
(2)如果点C、D分别在x轴、y轴上,四边形ABCD是平行四边形,求直线CD的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知:如图,在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,点E是AC边上的一个动点(点E与点A、C不重合).
(1)当a、b满足a2+b2-16a-12b+100=0,且c是不等式组$\left\{\begin{array}{l}{\frac{x+12}{4}≤x+6}\\{\frac{2x+2}{3}>x-3}\end{array}\right.$的最大整数解,试求△ABC的三边长;
(2)在(1)的条件得到满足的△ABC中,若设AE=m,则当m满足什么条件时,BE分△ABC的周长的差不小于2?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.探究:如图1,四边形ABCD是矩形,E是CD中点,G是BC上一点,BG=CE,连接EG并延长交AB的延长线于点H,过点E作EH的垂线交AD于点F,求证:△BGH≌△DEF.
应用:如图2,四边形ABCD是菱形,∠D=60°,E、F分别是CD、AD上一点,以点E为旋转中心,将射线EF逆时针旋转120°,交BC于点G,交AB的延长线于点H,M是CD上一点,∠DFM=60°,FD=2cm,FE=3cm,BH=6cm,求HG的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知m是方程x2+x-1=0的一个根,求代数式(m+1)2+(m+1)(m-1)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.已知点A(0,3)、B(-1,0),直线CD平行于直线AB,且与抛物线y=x2-3x-6只有一个交点,则直线CD的表达式为y=3x-15.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.对于一次函数y=-x+2,下列结论错误的是(  )
A.y随着x的增大而减小
B.函数图象不经过第三象限
C.函数图象向下平移2个单位长度得到y=-x的图象
D.函数图象与x轴的交点是(0,2)

查看答案和解析>>

同步练习册答案