精英家教网 > 初中数学 > 题目详情

【题目】四边形ABCD中,∠B=∠D90°,∠C72°,在BCCD上分别找一点MN,使AMN的周长最小时,∠AMN+ANM的度数为_______

【答案】144°

【解析】

根据要使AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BCCD的对称点A′A″,即可得出∠AA′M+A″=60°,进而得出∠AMN+ANM=2(∠AA′M+A″)即可得出答案.

解:作A关于BCCD的对称点A′A″,连接A′A″,交BCM,交CDN,则A′A″即为AMN的周长最小值.

∵四边形ABCD中,∠B=∠D90°,∠C72°

∴∠DAB=108°

∴∠AA′M+A″=72°

∵∠MA′A=MAA′,∠NAD=A″

且∠MA′A+MAA′=AMN,∠NAD+A″=ANM

∴∠AMN+ANM=MA′A+MAA′+NAD+A″=2(∠AA′M+A″=2×72°=144°

故填:144°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.

1)求yx之间的函数关系式;

2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?

3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】公元初,中美洲马雅人使用的一种数字系统与其他计数方式都不相同,它采用二十进位制但只有3个符号,用点、划“—”、卵形来表示我们所使用的自然数,如自然数1-19的表示见下表,另外在任何数的下方加一个卵形,就表示把这个数扩大到它的20倍,如表中20100的表示.

(1)玛雅符号表示的自然数是哪个数;

(2)请你画出表示自然数280的玛雅符号.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线分别与x轴、y轴交于两点,与直线交于点C42).

1)点A坐标为( ),B为( );

2)在线段上有一点E,过点Ey轴的平行线交直线于点F,设点E的横坐标为m,当m为何值时,四边形是平行四边形;

3)若点Px轴上一点,则在平面直角坐标系中是否存在一点Q,使得四个点能构成一个菱形.若存在,求出所有符合条件的Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yax2b xc经过ABC三点,当x≥0时,其图象如图所示.

1)求抛物线的解析式,写出抛物线的顶点坐标;

2)画出抛物线yax2b xcx0时的图象;

3)利用抛物线yax2b xc,写出x为何值时,y0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O为原点,A. B为数轴上两点,AB=15,且OA:OB=2.

(1)AB对应的数分别为______

(2)A. B分别以4个单位/秒和3个单位/秒的速度相向而行,则几秒后A. B相距1个单位长度?

(3)A. B(2)中的速度同时向右运动,点P从原点O7个单位/秒的速度向右运动,是否存在常数m,使得4AP+3OBmOP为定值,若存在请求出m值以及这个定值;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中错误的是( )

A .在函数y=-x2中,当x=0y有最大值0

B.在函数y=2x2中,当x>0yx的增大而增大

C.抛物线y=2x2,y=-x2中,抛物线y=2x2的开口最小,抛物线y=-x2的开口最大

D.不论a是正数还是负数,抛物线y=ax2的顶点都是坐标原点

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△AOB和△ACD是等边三角形,其中ABx轴于E点,点E坐标为(30),点C(50)

(1)如图①,求BD的长;

(2)如图②,设BDx轴于F点,求证:∠OFA=DFA

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面文字:

对于(﹣5)+(﹣9)+17 +(﹣3

可以如下计算:

原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+(17+)+[(﹣3)+(﹣)]

=[(一5)+(﹣9)+17+(一3)]+[(﹣)+(﹣)++(﹣)]=0+(﹣1

=﹣1

上面这种方法叫拆项法,你看懂了吗?

仿照上面的方法,请你计算:(﹣1)+(﹣2000)+4000+(﹣1999

查看答案和解析>>

同步练习册答案