精英家教网 > 初中数学 > 题目详情
如图,点E、F在正方形ABCD的边AB、BC上,BE=CF,若CE=10cm,求DF的长.
∵四边形ABCD是正方形,
∴∠ABC=∠BCD=90°,BC=CD,
在△CBE和△DCF中,
BC=CD
∠ABC=∠BCD=90°
BE=CF

∴△CBE≌△DCF(SAS),
∴CE=DF,
∵CE=10cm,
∴DF=10cm.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,将边长都为1cm的正方形按如图所示摆放,点A1、A2、A3、A4分别是正方形的中心,则前5个这样的正方形重叠部分的面积和为(  )
A.
1
4
B.
1
2
C.1D.2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,DBAC,且DB=
1
2
AC,E是AC的中点,
(1)求证:BC=DE;
(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加一个什么条件,为什么?
(3)在(2)的条件下,若要使四边形DBEA是正方形,则∠C=______°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

正方形的边长为a,则它的对角线的交点到边的距离为(  )
A.
1
2
a
B.
1
3
a
C.
2
2
a
D.
2
4
a

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.
(1)求证:△BED≌△CFD;
(2)当∠A=90°时,试判断四边形DFAE是何特殊四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2;以此下去…,则正方形A4B4C4D4的面积为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在正方形ABCD中:
(1)已知:如图①,点E、F分别在BC、CD上,且AE⊥BF,垂足为M,求证:AE=BF.
(2)如图②,如果点E、F、G分别在BC、CD、DA上,且GE⊥BF,垂足M,那么GE、BF相等吗?证明你的结论.
(3)如图③,如果点E、F、G、H分别在BC、CD、DA、AB上,且GE⊥HF,垂足M,那么GE、HF相等吗?证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在正方形ABCD中,E、F分别是CB、CD延长线上的点,若EF=BE+DF,求证:∠EAF=135°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如果一个正方形的对角线长2
2
cm,则边长为______.

查看答案和解析>>

同步练习册答案