精英家教网 > 初中数学 > 题目详情

【题目】如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,∠ECB应为多少度,可使所修路段CEAB?试说明理由.此时CEBC有怎样的位置关系?

以下是小刚不完整的解答,请帮他补充完整.

解:由已知平行,得∠1=∠A67°(两直线平行,

∴∠CBD23°+67°= °,

当∠ECB+CBD °时,

可得CEAB.(

所以∠ECB °

此时CEBC.(

【答案】同位角相等;90180;同旁内角互补,两直线平行;90;垂直定义.

【解析】

根据平行线的性质推出∠1=∠A67°,求出∠DBC90°,根据平行线的判定得出当∠ECB+CBD180°时ABCE,再求出即可.

解:由已知平行,得∠1=∠A67°(两直线平行,同位角相等),

∴∠CBD23°+67°=90°,

当∠ECB+CBD180°时,

可得CEAB.( 同旁内角互补,两直线平行)

所以∠ECB90°,

此时CEBC(垂直定义),

故答案为:同位角相等;90180;同旁内角互补,两直线平行;90;垂直定义.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数图象经过点A02),且与正比例函数y=﹣x的图象交于点BB点的横坐标是﹣1

1)求该一次函数的解析式:

2)求一次函数图象、正比例函数图象与x轴围成的三角形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.

△ACB和△DCE的顶点都在格点上,ED的延长线交AB于点F.

(1)求证:△ACB∽△DCE;(2)求证:EF⊥AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.

(1)求证:AP=BQ;

(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016新疆)如图,ABCD中,AB=2,AD=1,ADC=60°,将ABCD沿过点A的直线l折叠,使点D落到AB边上的点D处,折痕交CD边于点E

(1)求证:四边形BCED是菱形;

(2)若点P时直线l上的一个动点,请计算PD′+PB的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:E在△ABCAC边的延长线上,D点在AB边上,DEBC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形(过DDG∥ACBCG)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:

阅读时间

(小时)

2

2.5

3

3.5

4

学生人数(名)

1

2

8

6

3

则关于这20名学生阅读小时数的说法正确的是(  )

A. 众数是8 B. 中位数是3 C. 平均数是3 D. 方差是0.34

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,正三角形ABC的边长为3+.

(1)如图,正方形EFPN的顶点E,F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);

(2)求(1)中作出的正方形E′F′P′N′的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校准备购进一批节能灯,已知1A型节能灯和3B型节能灯共需26元;3A型节能灯和2B型节能灯共需29元.
(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;
(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,设购进A型节能灯m只.
①请用含m的代数式表示总费用;
②请设计出最省钱的购买方案,并说明理由.

查看答案和解析>>

同步练习册答案