17£®Ä³ÊýѧÐËȤС×éµÄͬѧÔÙÒ»´Î̽¾¿Öз¢ÏÖ£ºÈôƽÃæÖ±½Ç×ø±êϵÖÐÓÐÁ½µãA£¨x1£¬y1£©ºÍB£¨x2£¬y2£©£¬ÔòÏ߶ÎABµÄÖеãCµÄ×ø±êΪ£¨$\frac{{{x_1}+{x_2}}}{2}£¬\frac{{{y_1}+{y_2}}}{2}$£©£®¾­¹ý½øÒ»²½µÄÌÖÂÛ£¬ËûÃÇÄؽèÖúÖÐλÏߺÍÒ»´Îº¯ÊýµÄ֪ʶ֤Ã÷ÁËÕâÒ»½áÂÛ£¬ÇëÄãʹÓøýáÂÛ½â´ðÏÂÃæÎÊÌ⣮
£¨1£©ÈôƽÃæÖ±½Ç×ø±êϵÖÐÓÐÁ½µãD£¨5£¬2£©ºÍE£¨-1£¬-4£©£¬ÔòÏ߶ÎDEµÄÖеãFµÄ×ø±êΪ£¨2£¬-1£©£»
£¨2£©Èçͼ£¬µãMÊÇË«ÇúÏßy=$\frac{8}{x}$ÔÚµÚÒ»ÏóÏÞÄڵķÖÖ§ÉϵÄÒ»µã£¬µãKµÄ×ø±êΪ£¨6£¬0£©£¬Ï߶ÎMKµÄÖеãNÒ²ÔÚÕâÒ»·ÖÖ§ÉÏ£¬ÔòµãMµÄ×ø±êΪ£¨2£¬4£©£¬µãNµÄ×ø±êΪ£¨4£¬2£©£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÉèµãPΪxÖáÉϵÄÒ»µã£¬µãQΪֱÏßy=-2xÉÏÒ»µã£¬ÈôÒÔM¡¢N¡¢P¡¢QΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐΣ¬ÊÔÇóµãPºÍµãQµÄ×ø±ê£®

·ÖÎö £¨1£©Ö±½Ó¸ù¾ÝÖеã×ø±ê¹«Ê½¼´¿ÉµÃ³ö½áÂÛ£»
£¨2£©ÉèM£¨x£¬$\frac{8}{x}$£©£¬¸ù¾ÝÖеã×ø±ê¹«Ê½ÓÃx±íʾ³öNµã×ø±ê£¬ÔÙ¸ù¾ÝµãNÔÚË«ÇúÏßÉϿɵóöxµÄÖµ£¬½ø¶øµÃ³öM¡¢NÁ½µãµÄ×ø±ê£»
£¨3£©ÉèP£¨a£¬0£©£¬Q£¨x£¬-2x£©£¬ÔÙ·ÖMNÊÇƽÐÐËıßÐεĶԽÇÏßÓëMPÊÇƽÐÐËıßÐεĶԽÇÏßÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ£®

½â´ð ½â£º£¨1£©¡ßD£¨5£¬2£©ºÍE£¨-1£¬-4£©£¬
¡àÏ߶ÎDEµÄÖеãFµÄ×ø±êΪ£¨$\frac{5-1}{2}$£¬$\frac{2-4}{2}$£©£¬¼´F£¨2£¬-1£©£®
¹Ê´ð°¸Îª£¨2£¬-1£©£»

£¨2£©¡ßµãMÔÚË«ÇúÏßy=$\frac{8}{x}$ÉÏ£¬
¡àÉèM£¨x£¬$\frac{8}{x}$£©£®
¡ßµãKµÄ×ø±êΪ£¨6£¬0£©£¬µãNÊÇÏ߶ÎMKµÄÖе㣬
¡àN£¨$\frac{x+6}{2}$£¬$\frac{4}{x}$£©£®
¡ßµãNÒ²ÔÚË«ÇúÏßy=$\frac{8}{x}$ÉÏ£¬
¡à$\frac{4}{x}$=$\frac{8}{\frac{x+6}{2}}$£¬½âµÃx=2£¬
¡àM£¨2£¬4£©£¬N£¨4£¬2£©£®
¹Ê´ð°¸Îª£º£¨2£¬4£©£¬£¨4£¬2£©£»

£¨3£©ÉèP£¨a£¬0£©£¬Q£¨x£¬-2x£©£¬
µ±MNÊÇƽÐÐËıßÐεĶԽÇÏßʱ£¬
¡ßM£¨2£¬4£©£¬N£¨4£¬2£©£¬
¡à2+4=a+x£¬4+2=-2x£¬½âµÃx=-3£¬a=9£¬
¡àP£¨9£¬0£©£¬Q£¨-3£¬6£©£»
µ±MPÊÇƽÐÐËıßÐεĶԽÇÏßʱ£¬
2+a=4+x£¬4=-2x+2£¬½âµÃx=-1£¬a=1£¬
¡àP£¨1£¬0£©£¬Q£¨-1£¬2£©£®
µ±NPΪ¶Ô½ÇÏßʱ£¬Ò×ÖªP£¨-1£¬0£©£¬Q£¨1£¬-2£©
×ÛÉÏËùÊö£¬µãPºÍµãQµÄ×ø±êΪP£¨9£¬0£©£¬Q£¨-3£¬6£©»òP£¨1£¬0£©£¬Q£¨-1£¬2£©»ò£¨-1£¬0£©£¬Q£¨1£¬-2£©£®

µãÆÀ ±¾Ì⿼²éµÄÊÇ·´±ÈÀýº¯Êý×ÛºÏÌ⣬Éæ¼°µ½·´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌص㼰ƽÐÐËıßÐεÄÅж¨µÈ֪ʶ£¬ÔÚ½â´ð£¨3£©Ê±Òª×¢Òâ½øÐзÖÀàÌÖÂÛ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Èô¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2+mx+n=0ÓÐÁ½¸öʵÊý¸ù£¬Ôòm¡¢nÂú×ãµÄÌõ¼þÊÇm2-4n¡Ý0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬¡ÑEµÄÔ²ÐÄÔÚ¡ÑOÉÏ£¬¡ÑE½»¡ÑOÓÚA¡¢BÁ½µã£¬¡ÑOµÄÏÒCEËùÔÚÖ±Ïß½»¡ÑEÓÚµãD¡¢H£¬CBµÄÑÓ³¤Ïß½»¡ÑEÓÚµãF£®
£¨1£©ÇóÖ¤£ºµãDÊÇ¡÷ABCµÄÄÚÐÄ£»
£¨2£©Çó$\frac{AG}{BF}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®¹Û²ìÏÂÃæÓйæÂɵÄÈýÐе¥Ïîʽ£º
x£¬2x2£¬4x3£¬8x4£¬16x5£¬32x6£¬¡­¢Ù
-2x£¬4x2£¬-8x3£¬16x4£¬-32x5£¬64x6£¬¡­¢Ú
2x2£¬-3x3£¬5x4£¬-9x5£¬17x6£¬-33x7£¬¡­¢Û
£¨1£©¸ù¾ÝÄã·¢ÏֵĹæÂÉ£¬µÚÒ»ÐеÚ8¸öµ¥ÏîʽΪ128x8£»
£¨2£©µÚ¶þÐеÚn¸öµ¥ÏîʽΪ£¨-2£©nxn£»
£¨3£©µÚÈýÐеÚ8¸öµ¥ÏîʽΪ-129x9£»µÚn¸öµ¥ÏîʽΪ£¨-1£©n+1£¨1+2n-1£©xn+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÔÚ¡÷ABCÖУ¬µãDÔÚBCµÄÑÓ³¤ÏßÉÏ£¬EÊÇAC±ßÖе㣬DEµÄÑÓ³¤Ïß½»ABÓÚµãF£®
£¨1£©ÈôCD=BC£¬Çó$\frac{AF}{BF}$£»
£¨2£©$\frac{CD}{BC}=\frac{n}{m}$£¬Çó$\frac{AF}{BF}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬AB=AC£¬CD¡ÍABÓÚµãD£¬BE¡ÍACÓÚµãE£¬BEÓëCDÏཻÓÚµãO£®
£¨1£©ÇóÖ¤£ºAD=AE£»
£¨2£©Á¬½ÓAO£¬Ö¤Ã÷£ºAOƽ·Ö¡ÏBAC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÓÃÊʵ±µÄ·½·¨½âÏÂÁз½³Ì
£¨1£©£¨x-2£©2-4=0        
£¨2£©x2-4x-3=0     
£¨3£©3£¨x-2£©2=x£¨x-2£©
£¨4£©x2+4x-5=0£¨Åä·½·¨£©         
£¨5£©x2+2$\sqrt{3}$x+3=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÈçͼÊÇÒ»×ù¹Å¹°ÇŵĽØÃæͼ£¬¹°ÇŶ´ÊÇÅ×ÎïÏßÐÎ×´£¬Æä¿ç¶ÈΪ10m£¬ÇŶ´ÓëË®ÃæµÄ×î´ó¾àÀëΪ4m£¬½«¹°Çŵĺá½ØÃæ·ÅÔÚÈçͼËùʾµÄƽÃæÖ±½Ç×ø±êϵÖУ®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÈôÇŶ´Á½²à±ÚÉϸ÷ÓÐÒ»Õµ¾àÀëË®Ãæ3Ã׸ߵľ°¹ÛµÆ£¬ÇóÕâÁ½Õµ¾°¹ÛµÆ¼äµÄˮƽ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬¡÷ABCÄÚ½ÓÓÚ¡ÑO£¬D£¬F·Ö±ðÊÇ$\widehat{AC}$Óë$\widehat{AB}$Éϵĵ㣬$\widehat{BF}$=$\widehat{DA}$£¬Á¬½ÓAF²¢ÑÓ³¤½»CBµÄÑÓ³¤ÏßÓÚµãE£¬Á¬½ÓAD£¬CD£¬ÇóÖ¤£º¡÷CDA¡×¡÷ABE£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸