精英家教网 > 初中数学 > 题目详情
7.如图,已知AC与BC相交于点O,∠C=∠D=75°,∠A=35°,则∠B的度数为(  )
A.25°B.35°C.40°D.45°

分析 根据三角形的内角和定理求出∠AOD,根据对顶角相等可得∠BOC=∠AOD,再根据三角形的内角和等于180°列式计算即可得解.

解答 解:在△AOD中,∵∠D=75°,∠A=35°,
∴∠AOD=180°-∠A-∠D=180°-35°-75°=70°,
∵∠BOC=∠AOD=70°(对顶角相等),
∴在△BOC中,∠B=180°-∠BOC-∠C=180°-70°-75°=35°.
故选B.

点评 本题考查了三角形的内角和定理,对顶角相等的性质,熟记定理并准确识图理清图中各角度之间的关系是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(-3,0)和点B(2,0),直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F.
(1)求抛物线的解析式;
(2)连接AE,求h为何值时,△AEF的面积最大.
(3)已知一定点M(-2,0),问:是否存在这样的直线y=h,使△BDM是等腰三角形?若存在,请求出h的值和点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,河岸边有座塔AB,小敏在河对岸C处测得塔顶A的仰角为30°,向塔前进20米到达D处,又测得塔顶A的仰角为45°,请根据上述数据计算水塔的高.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.古希腊的毕达哥拉斯学派由古希腊哲学家毕达哥斯拉所创立,毕达哥斯拉学派认为数是万物的本原,事物的性质是由某市数量关系决定的,如他们研究各种多边形数:
记第n个k边形数N(n,k)=$\frac{k-2}{2}$n2+$\frac{4-k}{2}$n(m≥1,k≥3,k,n都为整数)
如第1个三角形数N(1,3)=$\frac{3-2}{2}$×12+$\frac{4-3}{2}$×1=1;
第2个三角形数N(2,3)=$\frac{3-2}{2}$×22+$\frac{4-3}{2}$×2=3;
第3个三角形数N(3,4)=$\frac{4-2}{2}$×32+$\frac{4-4}{2}$×3=9;
第4个三角形数N(4,4)=$\frac{4-2}{2}$×42+$\frac{4-4}{2}$×4=16
(1)N(5,3)=15,N(6,5)=51;
(2)若N(m,6)比N(m+2,4)大10,求m的值;
(3)若记y=N(6,t)-N(t,5),试求出y的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知:直线l:y=2x+2b与过点D(0,-2)平行于x轴的直线DE交于B点,与x轴交于点A.
(1)求A、B两点的坐标;(用含b的代数式表示);
(2)当△ABD是以AD为底边的等腰三角形时,求b的值;
(3)设直线y=2x+2b与y轴交于点C,当△CAO的面积是△CBD的面积的4倍时,求b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知:如图,四边形ABCD中,∠A=∠C=90°,∠D=60°,AD=5$\sqrt{3}$,AB=3,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,三角形ABC中,AB=AC=2,∠B=15°,求AB边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.设A=-$\frac{1}{2}$x-4(x-$\frac{1}{3}$y)+(-$\frac{3}{2}$x+$\frac{2}{3}$y).
(1)当x=-$\frac{1}{3}$,y=1时,求A的值;
(2)若使求得的A的值与(1)中的结果相同,则给出的x、y的条件还可以是-3x+y=2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,是一个圆形展厅,为了监控整个展厅,在其圆形边缘上安装了甲、乙两台监视器,若甲监视器的监控角度为65°,则乙监控器的监控角度至少为(  )
A.25°B.65°C.115°D.130°

查看答案和解析>>

同步练习册答案