精英家教网 > 初中数学 > 题目详情

如图:已知D、E、F分别是△ABC各边的中点,
求证:AE与DF互相平分.

证明:∵D、E、F分别是△ABC各边的中点,根据中位线定理知:
DE∥AC,DE=AF,
EF∥AB,EF=AD,
∴四边形ADEF为平行四边形.
故AE与DF互相平分.
分析:要证AE与DF互相平分,根据平行四边形的判定,就必须先四边形ADEF为平行四边形.
点评:本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.三角形的中位线的性质定理,为证明线段相等和平行提供了依据.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC内接于⊙O,过A作⊙O的切线,与BC的延长线交于D,且AD=
3
+1
,CD精英家教网=2,∠ADC=30°
(1)AC与BC的长;
(2)求∠ABC的度数;
(3)求弓形AmC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

30、如图,已知直线a,b与直线c相交,下列条件中不能判定直线a与直线b平行的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

40、尺规作图:如图,已知直线BC及其外一点P,利用尺规过点P作直线BC的平行线.(用两种方法,不要求写作法,但要保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:DE∥BC,AB=14,AC=18,AE=10,则AD的长为(  )
A、
9
70
B、
70
9
C、
5
126
D、
126
5

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,已知直线AB∥CD,∠1=50°,则∠2=
50
度.

查看答案和解析>>

同步练习册答案