精英家教网 > 初中数学 > 题目详情
如图1,在平面直角坐标系中,已知点A(0,4),点B在x正半轴上,且∠ABO=30度.动点P在线段AB上从点A向点B以每秒个单位的速度运动,设运动时间为t秒.在x轴上取两点M,N作等边△PMN.
(1)求直线AB的解析式;
(2)求等边△PMN的边长(用t的代数式表示),并求出当等边△PMN的顶点M运动到与原点O重合时t的值;
(3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上.设等边△PMN和矩形ODCE重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.

【答案】分析:(1)先在直角三角形AOB中,根据∠ABO的度数和OA的长,求出OB的长,即可得出B点的坐标,然后用待定系数法即可求出直线AB的解析式.
(2)求等边三角形的边长就是求出PM的长,可在直角三角形PMB中,用t表示出BP的长,然后根据∠ABO的度数,求出PM的长.
当M、O重合时,可在直角三角形AOP中,根据OA的长求出AP的长,然后根据P点的速度即可求出t的值.
(3)本题要分情况进行讨论:
①当N在D点左侧且E在PM右侧或在PM上时,即当0≤t≤1时,重合部分是直角梯形EGNO.
②当N在D点左侧且E在PM左侧时,即当1<t<2时,此时重复部分为五边形,(如图3)其面积可用△PMN的面积-△PIG的面积-△OMF的面积来求得.(也可用梯形ONGE的面积-三角形FEI的面积来求).
③当N、D重合时,即t=2时,此时M、O也重合,此时重合部分为等腰梯形.
根据上述三种情况,可以得出三种不同的关于重合部分面积与t的函数关系式,进而可根据函数的性质和各自的自变量的取值范围求出对应的S的最大值.
解答:解:(1)由OA=4,∠ABO=30°,得到OB=12,
∴B(12,0),设直线AB解析式为y=kx+b,
把A和B坐标代入得:
解得:
则直线AB的解析式为:y=-x+4

(2)∵∠AOB=90°,∠ABO=30°,
∴AB=2OA=8
∵AP=t,
∴BP=AB-AP=8t,
∵△PMN是等边三角形,
∴∠MPB=90°,
∵tan∠PBM=
∴PM=(8-t)×=8-t.
如图1,过P分别作PQ⊥y轴于Q,PS⊥x轴于S,
可求得AQ=AP=t,PS=QO=4-t,
∴PM=(4-)÷=8-t,
当点M与点O重合时,
∵∠BAO=60°,
∴AO=2AP.
∴4=2t,
∴t=2.

(3)①当0≤t≤1时,见图2.
设PN交EC于点G,重叠部分为直角梯形EONG,作GH⊥OB于H.
∵∠GNH=60°,
∴HN=2,
∵PM=8-t,
∴BM=16-2t,
∵OB=12,
∴ON=(8-t)-(16-2t-12)=4+t,
∴OH=ON-HN=4+t-2=2+t=EG,
∴S=(2+t+4+t)×2=2t+6
∵S随t的增大而增大,
∴当t=1时,Smax=8
②当1<t<2时,见图3.
设PM交EC于点I,交EO于点F,PN交EC于点G,重叠部分为五边形OFIGN.
作GH⊥OB于H,
∵FO=4-2t,
∴EF=2-(4-2t)=2t-2
∴EI=2t-2.
∴S=S梯形ONGE-S△FEI=2t+6-(2t-2)(2t-2)=-2t2+6t+4
由题意可得MO=4-2t,OF=(4-2t)×,PC=4-t,PI=4-t,
再计算S△FMO=(4-2t)2×
S△PMN=(8-t)2,S△PIG=(4-t)2
∴S=S△PMN-S△PIG-S△FMO=(8-t)2-(4-t)2-(4-2t)2×
=-2t2+6t+4
∵-2<0,
∴当时,S有最大值,Smax=
③当t=2时,MP=MN=6,即N与D重合,
设PM交EC于点I,PD交EC于点G,重叠部
分为等腰梯形IMNG,见图4.S=×62-×22=8
综上所述:当0≤t≤1时,S=2t+6
当1<t<2时,S=-2t2+6t+4
当t=2时,S=8


∴S的最大值是
点评:本题考查一次函数解析式的确定、图形的面积求法、三角形相似及二次函数的综合应用等知识,综合性强,考查学生分类讨论,数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、在数学上,为了确定平面上点的位置,我们常用下面的方法:如图甲,在平面内画两条互相垂直,并且有公共原点O的数轴,通常一条画成水平,叫x轴,另一条画成铅垂,叫y轴,这样,我们就说在平面上建立了一个平面直角坐标系,这是由法国数学家和哲学家笛卡尔创立的,这样我们就能确定平面上点的位置,例如,要确定点M的位置,只要作MP⊥x轴,MP⊥y轴,设垂足N,P在各自数轴上所表示的数分别为x,y,则x叫做点M的横坐标,y叫做点M的纵坐标,有序数对(x,y)叫做M点的坐标,如图甲,点M的坐标记作(2,3),(1)△ABC在平面直角坐标系中的位置如图乙,请把△ABC向右平移3个单位,在平面直角坐标系中画出平移后的△A′B′C′;
(2)请写出平移后点A′的坐标,记作
(2,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,将一块腰长为2
2
cm的等腰直角三角板ABC如图放置,BC边与x轴重合,∠ACB=90°,直角顶点C的坐标为(-3,0).
(1)点A的坐标为
(-3,2
2
(-3,2
2
,点B的坐为
(-3-2
2
,0)
(-3-2
2
,0)

(2)求以原点O为顶点且过点A的抛物线的解析式;
(3)现三角板ABC以1cm/s的速度沿x轴正方向平移,则平移的时间为多少秒时,三角板的边所在直线与半径为2cm的⊙O相切?

查看答案和解析>>

科目:初中数学 来源:同步轻松练习 八年级 数学 上 题型:059

学校阅览室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2张方桌拼成一行能坐6人(如图)

(1)按照这种规定填写下表:

(2)根据表中的数据,将s作为纵坐标,n作为横坐标,在如图所示的平面直角坐标系中找出相应各点.

(3)请你猜一猜上述各点会在某一个函数图象上吗?如果在某一函数图象上,求出该函数的解析式,并利用你探求的结果,求出当n=10时,s的值.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年北京海淀区九年级第一学期期中测评数学试卷(解析版) 题型:解答题

阅读下面的材料:

小明在研究中心对称问题时发现:

如图1,当点为旋转中心时,点绕着点旋转180°得到点,点再绕着点旋转180°得到点,这时点与点重合.

如图2,当点为旋转中心时,点绕着点旋转180°得到点,点绕着点旋转180°得到点,点绕着点旋转180°得到点,点绕着点旋转180°得到点,小明发现P、两点关于点中心对称.

(1)请在图2中画出点, 小明在证明P、两点关于点中心对称时,除了说明P、三点共线之外,还需证明;

(2)如图3,在平面直角坐标系xOy中,当为旋转中心时,点绕着点旋转180°得到点;点绕着点旋转180°得到点;点绕着点旋转180°得到点;点绕着点旋转180°得到点. 继续如此操作若干次得到点,则点的坐标为(),点的坐为.

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在数学上,为了确定平面上点的位置,我们常用下面的方法:如图甲,在平面内画两条互相垂直,并且有公共原点O的数轴,通常一条画成水平,叫x轴,另一条画成铅垂,叫y轴,这样,我们就说在平面上建立了一个平面直角坐标系,这是由法国数学家和哲学家笛卡尔创立的,这样我们就能确定平面上点的位置,例如,要确定点M的位置,只要作MP⊥x轴,MP⊥y轴,设垂足N,P在各自数轴上所表示的数分别为x,y,则x叫做点M的横坐标,y叫做点M的纵坐标,有序数对(x,y)叫做M点的坐标,如图甲,点M的坐标记作(2,3),
(1)△ABC在平面直角坐标系中的位置如图乙,请把△ABC向右平移3个单位,在平面直角坐标系中画出平移后的△A′B′C′;
(2)请写出平移后点A′的坐标,记作______.

查看答案和解析>>

同步练习册答案