精英家教网 > 初中数学 > 题目详情

已知,AB为⊙O的直径,点E为弧AB任意一点,如图,AC平分∠BAE,交⊙O于C,过点C作CD⊥AE于D,与AB的延长线交于P.
(1)求证:PC是⊙O的切线;
(2)若∠BAE=60°,求线段PB与AB的数量关系.

(1)证明:连OC,BC,如图,
∵∠1=∠2,
∵OA=OC,
∴∠1=∠OCA,
∴∠2=∠OCA.
∴AD∥OC.
又∵CD⊥AE,
∴OC⊥CD.
∴PC是⊙O的切线.

(2)解:若∠BAE=60°,则∠1=30°,∠P=30°.
∵AB为⊙O的直径,
∴∠BCA=90°.
∴∠3=60°,则△OBC为等边三角形,即BC=AB.
而∠3=∠P+∠4,所以∠4=30°,
∴BC=BP.
∴PB=AB.
分析:(1)通过角平分线和有两半径为边的三角形是等腰三角形可得到OC∥AD,再证明OC⊥CD.
(2)先得到△ACB是含30°的直角三角形,找到AB=2BC,再证明BC=BP即可.
点评:熟练掌握切线的判定定理,证明切线的问题转化为证明线段垂直的问题.要学会充分利用特殊角进行角度计算,确定边之间的数量.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

甲、乙两人分别从A、B两地到C地,甲从A地到C地需3小时,乙从B地至C地需2小时40分,已知A、C两地间的距离比B、C两地间的距离远10千米,每行1千米甲比乙少花10分.
(1)求A、C两地间的距离;
(2)假设AC、BC、AB这三条道路均为直的,试判定A、B两地之间距离d的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.
①求此桥拱线所在抛物线的解析式.
②桥边有一浮在水面部分高4m,最宽处16m的河鱼餐船,如果从安全方面考虑,要求通过愚溪桥的船只,其船身在铅直方向上距桥内壁的距离不少于0.5m.探索此船能否通过愚溪桥?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•钦州)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:
3
,AB=10米,AE=15米.(i=1:
3
是指坡面的铅直高度BH与水平宽度AH的比)
(1)求点B距水平面AE的高度BH;
(2)求广告牌CD的高度.
(测角器的高度忽略不计,结果精确到0.1米.参考数据:
2
1.414,
3
1.732)

查看答案和解析>>

科目:初中数学 来源:2011-2012学年黑龙江省哈尔滨市铁路学校九年级(上)期中数学试卷(解析版) 题型:解答题

如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.
①求此桥拱线所在抛物线的解析式.
②桥边有一浮在水面部分高4m,最宽处16m的河鱼餐船,如果从安全方面考虑,要求通过愚溪桥的船只,其船身在铅直方向上距桥内壁的距离不少于0.5m.探索此船能否通过愚溪桥?说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(广西钦州卷)数学(解析版) 题型:解答题

如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)

(1)求点B距水平面AE的高度BH;

(2)求广告牌CD的高度.

(测角器的高度忽略不计,结果精确到0.1米.参考数据:1.414,1.732)

 

查看答案和解析>>

同步练习册答案