精英家教网 > 初中数学 > 题目详情

如图,四边形中ABCD中,E,F分别是AB,CD的中点,P为对角线AC延长线上的任意一点,PF交AD于M,PE交BC于N,EF交MN于K.
求证:K是线段MN的中点.

证明:∵EF截△PMN,

∵BC截△PAE,

∴即有
所以
∵AD截△PCF,

,∴
因AP=AC+CP,得2CP+AC=2AP-AC,由(3),(4)得,


所以由(1)得NK=KM,即K是线段MN的中点.
分析:根据题意,EF截△PMN,则;BC截△PAE,则;所以.而AD截△PCF,则,即,∴,因AP=AC+CP,得2CP+AC=2AP-AC,由(3),(4)得,,即,所以由(1)得NK=KM,即K是线段AM的中点.
点评:本题考查了线段截三角形所得的线段的比为定值.以及比例的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C出发沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.精英家教网
(1)当t为何值时,AD=AB,并求出此时DE的长度;
(2)当△DEG与△ACB相似时,求t的值;
(3)以DH所在直线为对称轴,线段AC经轴对称变换后的图形为A′C′.
①当t>
35
时,连接C′C,设四边形ACC′A′的面积为S,求S关于t的函数关系式;
②当线段A′C′与射线BB′,有公共点时,求t的取值范围(写出答案即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠BCD.
(1)求证:∠1+∠2=90°;
精英家教网
(2)若∠ABD的平分线与CD的延长线交于F,且∠F=55°,求∠ABC;
精英家教网
(3)若H是BC上一动点,F是BA延长线上一点,FH交BD于M,FG平分∠BFH,交DE于N,交BC于G.当H在BC上运动时(不与B点重合),
∠BAD+∠DMH∠DNG
的值是否变化?如果变化,说明理由;如果不变,试求出其值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•海珠区一模)如图1,在△ABC中,AB=BC=5,AC=6,△ECD是△ABC沿BC方向平移得到的,连接AE、AC、BE,且AC和BE相交于点O.
(1)求证:四边形ABCE是菱形;
(2)如图2,P是线段BC上一动点(不与B、C重合),连接PO并延长交线段AE于点Q,过Q作QR⊥BD交BD于R.
①四边形PQED的面积是否为定值?若是,请求出其值;若不是,请说明理由;
②以点P、Q、R为顶点的三角形与以点B、C、O为顶点的三角形是否可能相似?若可能,请求出线段BP的长;若不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)当t=2时,AP=
1
1
,点Q到AC的距离是
8
5
8
5

(2)在点P从C向A运动的过程中,将△APQ的面积S用关于t的代数式来表示;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t所有可能的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•遵义)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).
(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?
(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案