精英家教网 > 初中数学 > 题目详情
17.(1)计算:$\sqrt{12}$-2-1+|$\sqrt{3}$-2|-3sin30°             
(2)化简:(1+a)(1-a)-a(a-3)

分析 (1)原式第一项化为最简二次根式,第二项利用负整数指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果;
(2)原式利用平方差公式及单项式乘以多项式法则计算,去括号合并即可得到结果.

解答 解:(1)原式=2$\sqrt{3}$-$\frac{1}{2}$+2-$\sqrt{3}$-3×$\frac{\sqrt{3}}{2}$=-$\frac{1}{2}$$\sqrt{3}$+$\frac{3}{2}$;
(2)原式=1-a2-a2+3a=1-2a2+3a.

点评 此题考查了实数的运算,以及整式的混合运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.如图,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.
(1)求证:△DEC≌△EDA;
(2)求DF的值;
(3)在线段AB上找一点P,连结FP使FP⊥AC,连结PC,试判定四边形APCF的形状,并说明理由,直接写出此时线段PF的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.小明早8点从家骑自行车出发,沿一条直路去邮局办事,小明出发的同时,他的爸爸从邮局沿同一条道路步行回家,小明在邮局停留了一会后沿原路以原速度返回,小明比爸爸早3分钟到家.设他们与家的距离S(m)与离开家的时间t(min)之间函数关系的如图所示,有下列说法:①邮局与家的距离为2400米;②小明到家的时间为8:22分;③爸爸的速度为96mAmin;④小明在返回途中离家480米处于爸爸相遇,其中正确的说法有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.计算:$\sqrt{4}+(\sqrt{3}-π)^{0}-(\frac{1}{2})^{-2}$的值为-1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.已知二次函数y=ax2+bx+c的图象如图所示,下列结论中,正确的结论的个数(  )
①a+b+c>0;②a-b+c<0;③abc<0;④b=2a; ⑤b>0.
A.5个B.4个C.3个D.2个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.化简:2x2-3x2=-x2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,二次函数y=x2+2x+c的图象与x轴交于点A和点B(1,0),以AB为边在x轴上方作正方形ABCD,动点P从点A出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,同时动点Q从点C出发,以每秒1个单位长度的速度沿CB匀速运动,当点Q到达终点B时,点P停止运动,设运动时间为t秒.连接DP,过点P作DP的垂线与y轴交于点E.
(1)求点A的坐标;
(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,并求出这个最大值;
(3)在P,Q运动过程中,求当△DPE与以D,C,Q为顶点的三角形相似时t的值;
(4)是否存在t,使△DCQ沿DQ翻折得到△DC′Q,点C′恰好落在抛物线的对称轴上?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.甲车速度为20米/秒,乙车速度为25米/秒,现甲车在乙车前面500米,设x秒后两车之间的距离为y米,则y随x变化的函数解析式为y=-5x+500,自变量x的取值范围是0≤x≤100.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,⊙O1与⊙O2相交于P、Q两点,过P点作两圆的割线分别交于⊙O1与⊙O2于A、B,过A、B分别作两圆的切线相交于T,求证:T、A、Q、B四点共圆.

查看答案和解析>>

同步练习册答案