精英家教网 > 初中数学 > 题目详情
如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,精英家教网以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系.y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6m.
(1)求抛物线的解析式;
(2)如果该隧道内设双行道,现有一辆货运卡车高4.2m,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.
分析:(1)根据抛物线在坐标系中的特殊位置,可以设抛物线的一般式,顶点式,求抛物线的解析式.
(2)抛物线的实际应用问题中,可以取自变量的值,求函数值.
解答:解:(1)设抛物线的解析式为y=ax2+bx+c,由对称轴是y轴得b=0,
∵EO=6,
∴c=6,
∵矩形的长BC为8m,宽AB为2m,精英家教网以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系
∴D(4,2),
又∵抛物线经过点D(4,2),
∴16a+4b+6=2,
解得a=-
1
4

所求抛物线的解析式为:y=-
1
4
x2+6.

(2)取x=±2.4,代入(1)所求得的解析式中,得
y=-
1
4
×(±2.4)2+6.
解得:y=4.56>4.2
故这辆货运卡车能通过隧道.
点评:求抛物线解析式有几种方法,因题而异,灵活处理.会找抛物线上几个关键点的坐标,确定抛物线解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:044

如图,隧道的截面由抛物线和长方形构成.长方形的长为16m,宽为6m,抛物线的最高点C离路面的距离为8m.

(1)按如图所示的直角坐标系,求表示该抛线的函数表达式;

(2)一大型货运汽车装载某大型设备后高为7m,宽为4m.如果该隧道内设双向行车道,那么这辆货车能否安全通过?

查看答案和解析>>

同步练习册答案