【题目】如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G、F两点.
(1)求证:AB与⊙O相切;
(2)若等边三角形ABC的边长是4,求线段BF的长?
【答案】(1)证明见试题解析;(2).
【解析】
(1)过点O作OM⊥AB于M,证明OM=圆的半径OD即可;
(2)过点O作ON⊥BE,垂足是N,连接OF,得到四边形OMBN是矩形,在直角△OBM中利用三角函数求得OM和BM的长,进而求得BN和ON的长,在直角△ONF中利用勾股定理求得NF,则BF即可求解.
解:(1)过点O作OM⊥AB,垂足是M.
∵⊙O与AC相切于点D,
∴OD⊥AC,
∴∠ADO=∠AMO=90°.
∵△ABC是等边三角形,
∴∠DAO=∠MAO,
∴OM=OD,
∴AB与⊙O相切;
(2)过点O作ON⊥BE,垂足是N,连接OF.
∵O是BC的中点,
∴OB=2.在直角△OBM中,∠MBO=60°,
∴∠MOB=30°, BM=OB=1,
OM=BM =,
∵BE⊥AB,
∴四边形OMBN是矩形,
∴ON=BM=1,BN=OM=.
∵OF=OM=,由勾股定理得NF=.
∴BF=BN+NF=.
科目:初中数学 来源: 题型:
【题目】将一列有理数﹣1,2,﹣3,4,﹣5,6,…,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C的位置)是有理数4,那么,“峰6”中C 的位置是有理数_____,2008应排在A、B、C、D、E中_____的位置.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地区为进一步发展基础教育,自年以来加大了教育经费的投入,年该地区投入教育经费万元,年投入教育经费万元.
(1)求该地区这两年投入教育经费的年平均增长率;
(2)若该地区教育经费的投入还将保持相同的年平均增长率,请预算年该地区投入教育经费为 万元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰直角三角形ABC中,∠C=90°,点D是△ABC的重心,以AD为直角边作等腰Rt△ADE,若△ABC的周长为6,则△ADE的周长为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,已知抛物线的顶点为点P,与y轴交于点B.点A坐标为(3,2).点M为抛物线上一动点,以点M为圆心,MA为半径的圆交x轴于C,D两点(点C在点D的左侧).
(1)如图②,当点M与点B重合时,求CD的长;
(2)当点M在抛物线上运动时,CD的长度是否发生变化?若变化,求出CD关于点M横坐标x的函数关系式;若不发生变化,求出CD的长;
(3)当△ACP与△ADP相似时,求出点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是( )
A. x1=1,x2=﹣1B. x1=1,x2=3C. x1=1,x2=2D. x1=1,x2=3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数y=ax2+bx+c(a≠0)的图象如图,给出下列4个结论:①abc>0; ②b2>4ac; ③4a+2b+c>0;④2a+b=0.其中正确的有( )个.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A城有某种农机30台,B城有该农机40台.现要将这些农机全部运往C、D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36台,从A城往C、D两乡运送农机的费用分别为250元/台和200元/台,从B城往C、D两乡运送农机的费用分别为150元/台和240元/台
(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并直接写出自变量x的取值范围;
(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;
(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(100<a<250)作为优惠,其他费用不变.在(2)的条件下,若总费用最小值为10740元,直接写出a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com