精英家教网 > 初中数学 > 题目详情
如图①,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D且AD与B相交于E点.已知:A(-2,-6),C(1,-3)
(1)求证:E点在y轴上;
(2)如果有一抛物线经过A,E,C三点,求此抛物线方程.
(3)如果AB位置不变,再将DC水平向右移动k(k>0)个单位,此时AD与BC相交于E′点,如图②,求△AE′C的面积S关于k的函数解析式.
(1)证明:由D(1,0),A(-2,-6),
得DA直线方程:y=2x-2①
再由B(-2,0),C(1,-3),
得BC直线方程:y=-x-2②
结合①②得
x=0
y=-2

∴E点坐标(0,-2),
即E点在y轴上.

(2)设抛物线的方程y=ax2+bx+c(a≠0)过A(-2,-6),C(1,-3),
E(0,-2)三点,得方程组
4a-2b+c=-6
a+b+c=-3
c=-2

解得a=-1,b=0,c=-2,
∴抛物线解析式为y=-x2-2.

(3)∵BADC,
∴S△BCA=S△BDA
∴S△AE′C=S△BDE′=
1
2
BD•E′F=
1
2
(3+k)×2=3+k.
∴S=3+k为所求函数解析式.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,等腰直角三角形纸片ABC中,AC=BC=4,∠ACB=90°,直角边AC在x轴上,B点在第二象限,A(1,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止.设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形BCFE与△AEF重叠的面积为S.
(1)求折痕EF的长;
(2)是否存在某一时刻t使平移中直角顶点C经过抛物线y=x2+4x+3的顶点?若存在,求出t值;若不存在,请说明理由;
(3)直接写出S与t的函数关系式及自变量t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知平面直角坐标系xOy,一次函数y=
3
4
x+3
的图象与y轴交于点A,点M在正比例函数y=
3
2
x的
图象上,且MO=MA.二次函数y=x2+bx+c的图象经过点A,M.求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某公司生产的A种产品,每件成本是2元,每件售价是3元,一年的销售量是10万件.为了获得更多的利润,公司准备拿出一定资金来做广告.根据经验,每年投入的广告费为x(万元)时,产品的年销售量是原来的y倍,且y是x的二次函数,公司作了预测,知x与y之间的对应关系如下表:
x(万元)012
y11.51.8
(1)根据上表,求y关于x的函数关系式;
(2)如果把利润看成是销售总额减去成本和广告费,请你写出年利润S(万元)与广告费x(万元)的函数关系式;
(3)从上面的函数关系式中,你能得出什么结论?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图抛物线y=-
3
3
x2-
2
3
3
x+
3
,x轴于A、B两点,交y轴于点C,顶点为D.
(1)求A、B、C的坐标;
(2)把△ABC绕AB的中点M旋转180°,得到四边形AEBC:
①求E点坐标;
②试判断四边形AEBC的形状,并说明理由;
(3)试探索:在直线BC上是否存在一点P,使得△PAD的周长最小?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2-2(k+1)x+4k的图象与x轴分别交于点A(x1,0)、B(x2,0),且-
3
2
<x1-
1
2

(1)求k的取值范围;
(2)设二次函数y=x2-2(k+1)x+4k的图象与y轴交于点M,若OM=OB,求二次函数的表达式;
(3)在(2)的条件下,若点N是x轴上的一点,以N、A、M为顶点作平行四边形,该平行四边形的第四个顶点F在二次函数y=x2-2(k+1)x+4k的图象上,请直接写出满足上述条件的平行四边形的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标平面中,O为坐标原点,二次函数y=x2+bx+c的图象与y轴的负半轴相交于点C,点C的坐标为(0,-3),且BO=CO.
(1)求出B点坐标和这个二次函数的解析式;
(2)求出y随x的增大而减小的自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一颗树,平均每棵树就会少结5个橘子.设果园增种x棵橘子树,果园橘子总个数为y个,则果园里增种______棵橘子树,橘子总个数最多.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,水平地面的A、B两点处有两棵笔直的大树相距2米,小明的父亲在这两棵树间拴了一根绳子,给他做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子.
(1)请完成如下操作:以AB所在直线为x轴、线段AB的垂直平分线为y轴,建立平面直角坐标系,根据题中提供的信息,求绳子所在抛物线的函数关系式;
(2)求绳子的最低点离地面的距离.

查看答案和解析>>

同步练习册答案