精英家教网 > 初中数学 > 题目详情
如图,△ABC内接于圆,AD是高,AE为圆的直径,AB=4,AC=3,AD=2,则直径AE的长为(  )
分析:根据圆周角定理及相似三角形的判定可得到△ABE∽△ADC,根据相似三角形的边对应成比例,代入后即可求解.
解答:解:连接BE,
∵AE是直径
∴∠ABE=∠ADC=90°
∵∠E=∠C
∴△ABE∽△ADC
AB
AD
=
AE
AC

∵AB=4,AC=3,AD=2,
4
2
=
AE
3

解得:AE=6,
故选B.
点评:本题利用了直径对的圆周角是直角,圆周角定理,相似三角形的判定和性质求解.属于基础题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案