精英家教网 > 初中数学 > 题目详情
17.如图,在平行四边形ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.
(1)求证:CD=BE;
(2)若AB=4,点F为DC的中点,DG⊥AE,垂足为G,且DG=1,求AE的长.

分析 (1)由平行四边形的性质和角平分线证出∠BAE=∠E.得出AB=BE,即可得出结论;
(2)同(1)证出DA=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.

解答 (1)证明:∵AE为∠ADB的平分线,
∴∠DAE=∠BAE.
∵四边形ABCD是平行四边形,
∴AD∥BC,CD=AB.
∴∠DAE=∠E.
∴∠BAE=∠E.
∴AB=BE.
∴CD=BE.
(2)解:∵四边形ABCD是平行四边形,
∴CD∥AB,
∴∠BAF=∠DFA.
∴∠DAF=∠DFA.
∴DA=DF.
∵F为DC的中点,AB=4,
∴DF=CF=DA=2.
∵DG⊥AE,DG=1,
∴AG=GF.
∴AG=$\sqrt{3}$.
∴AF=2AG=2$\sqrt{3}$.
在△ADF和△ECF中,$\left\{\begin{array}{l}{∠DAF=∠E}&{\;}\\{∠ADF=∠ECF}&{\;}\\{DF=CF}&{\;}\end{array}\right.$,
∴△ADF≌△ECF(AAS).
∴AF=EF,
∴AE=2AF=4$\sqrt{3}$.

点评 此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题(2)的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.已知,在△ABC中,AB=AC,点D为直线BC上一动点(点D不与B,C重合),连接AD,以AD为边作菱形ADEF,且∠DAF=∠BAC=α,连接CF,如图1,当点D在线段BC上时,我们易得CF、BC、CD三条线段之间的数量关系为:CF+CD=BC.
(1)如图2,当点D在线段BC的延长线上时,其他条件不变,请探究CF、BC、CD三条线段之间的数量关系并证明;
(2)如图3,当α=90°时,点D在线段BC的反向延长线上,且点A、F分别在直线BC的两侧,其他条件不变;
①请直接写出CF、BC、CD三条线段之间的数量关系;
②若菱形ADEF的边长为$\sqrt{2}$,对角线AE、DF相交于点O,连接OC,求OC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.解方程组:$\left\{\begin{array}{l}{2x+3y=22①}\\{x-y=6②}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,三角形ABC的三条边的长都是2个单位,现将三角形ABC沿射线BC方向向右平移1个单位后,得到三角形DEF,则四边形ABFD的周长为8个单位.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.在?ABCD中,E、F分别在BC、AD上,若想要使四边形AFCE为平行四边形,需添加一个条件,这个条件不可以是(  )
A.AF=CEB.AE=CFC.∠BAE=∠FCDD.∠BEA=∠FCE

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,直线l是经过点(1,0)且与y轴平行的直线.Rt△ABC中直角边AC=4,BC=3.将BC边在直线l上滑动,使A,B在函数y=$\frac{k}{x}$的图象上.那么k的值是(  )
A.3B.6C.12D.$\frac{15}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(-3,4),B(-4,1),C(0,-1).将△ABC向右平移4个单位长度,再向下平移3个单位长度,得到△A′B′C′,其中点A′,B′,C′分别为点A,B,C的对应点.
(1)请在所给坐标系中画出△A′B′C′,并直接写出点A′、B′、C′的坐标;
(2)若AB边上一点P(m,n)经过上述平移后的对应点为P′,用含m、n的式子表示点P′的坐标:(直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.
(1)求y与x的函数表达式;
(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.已知:四边形ABCD是菱形,两条对角线的长分别为AC=10,BD=24,则边长AB的长为13.

查看答案和解析>>

同步练习册答案