精英家教网 > 初中数学 > 题目详情
如图,双曲线y=
k
x
(x>0)
经过四边形OABC的顶点A、C,∠B=90°,OC平分OA与x轴的夹角,ABx轴,且S四边形OABC=2,将△ABC沿AC翻折后得△AB′C,B′点落在OA上,则k=______.
延长BC,交x轴于点D,
设点C(x,y),AB=a,
∵OC平分OA与x轴正半轴的夹角,
∴CD=CB′,△OCD≌△OCB′,
再由翻折的性质得,BC=B′C,
∴BD=2DC,
∵双曲线y=
k
x
(x>0)经过四边形OABC的顶点A、C,
∴S△OCD=
1
2
k,
∴S△OCB′=
1
2
k,
∵ABx轴,BD=2DC,
∴点A(x-a,2y),
∴2y(x-a)=k,
∴xy-ay=
1
2
k,
∵xy=k,
∴ay=
1
2
k,
∴S△ABC=
1
2
ay=
1
4
k,
∴SOABC=S△OCB′+S△ABC+S△ABC=
1
2
k+
1
4
k+
1
4
k=2,
解得:k=2.
故答案为:2.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知双曲线y=
k
x
经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.
(1)求k的值;
(2)若△BCD的面积为12,求直线CD的解析式;
(3)判断AB与CD的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某反比例函数的图象过点(-1,6),则该反比例函数的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,函数y=x与反比例函数y=
16
x
(x>0)的图象相交于点P,以P为顶点作45°的角,角的两边分别交坐标轴于A,B,C,D.连结AB,CD.
(1)求OP的长;
(2)若点C(-6,0),求D点的坐标;
(3)△OAB的周长是否变化?若不变化,试求出△OAB的周长;若变化,请说明理由;
(4)当OP⊥AB时:①求证:OP⊥CD;②求△OAB的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,设直线l2:y=-2x+8与x轴相交于点N,与直线l1相交于点E(1,a),双曲线y=
k
x
(x>0)经过点E,且与直线l1相交于另一点F(9,
2
3
).
(1)求双曲线解析式及直线l1的解析式;
(2)点P在直线l1上,过点F向y轴作垂线,垂足为点B,交直线l2于点H,过点P向x轴作垂线,垂足为点D,与FB交于点C.
①请直接写出当线段PH与线段PN的差最大时点P的坐标;
②当以P、B、C三点为顶点的三角形与△AMO相似时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知反比例函数y=
k1
2x
的图象与一次函数y=k2x+b的图象交于A,B两点,A(1,n),B(-
1
2
,-2).
(1)求反比例函数和一次函数的解析式;
(2)在x轴上是否存在点P,使△AOP为等腰三角形?若存在,请你直接写出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△OAP、△ABQ均是等腰直角三角形,点P、Q在函数y=
4
x
(x>0)的图象上,直角顶点A、B均在x轴上,则点B的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直线y=6-x交x轴、y轴于A、B两点,P是反比例函数y=
4
x
(x>0)
图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F.则AF•BE=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知圆柱的侧面积是10πcm2,若圆柱底面半径r(cm),高线长h(cm),则h关于r的函数图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案