精英家教网 > 初中数学 > 题目详情

一个多面体的面数(a)和这个多面体表面展开后得到的平面图形的顶点数(b),棱数(c)之间存在一定规律,如图1是正三棱柱的表面展开图,它原有5个面,展开后有10个顶点(重合的顶点只算一个),14条棱.

【探索发现】
(1)请在图2中用实线画出立方体的一种表面展开图;
(2)请根据图2你所画的图和图3的四棱锥表面展开图填写下表:
多面体面数a展开图的顶点数b展开图的棱数c
直三棱柱51014
四棱锥______812
立方体__________________
(3)发现:多面体的面数(a)、表面展开图的顶点数(b)、棱数(c)之间存在的关系式是______;
【解决问题】
(4)已知一个多面体表面展开图有17条棱,且展开图的顶点数比原多面体的面数多2,则这个多面体的面数是多少?

解:(1)如图所示:


(2)如图表:
多面体面数a展开图的顶点数b展开图的棱数c
直三棱柱51014
四棱锥5812
立方体61419
(3)由图表中数据可得出:a+b-c=1.
故答案为:a+b-c=1.

(4)由题意可得出:
解得:
答:这个多面体的面数是八面体.
分析:(1)利用立方体侧面展开图的特点得出即可;
(2)利用图形特点分别得出面数、顶点数、棱数即可;
(3)结合(2)中数据即可得出a,b,c之间的关系;
(4)利用已知得出方程组求出即可.
点评:此题考查了几何体的展开图,利用图形中数据变化规律是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、一个多面体的面数为6,棱数是12,则其顶点数为
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.
请你观察下列几种简单多面体模型,解答下列问题:

(1)根据上面多面体模型,完成表格中的空格:
多面体 顶点数(V) 面数(F) 棱数(E)
四面体 4 4
6
长方体 8 6 12
正八面体
6
8 12
正十二面体 20 12 30
你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是
V+F-E=2

(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是
20

(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:

(1)根据上面多面体模型,完成表格中的空格:

你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是
V+F-E=2

(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是
20

(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型如图1,解答下列问题:
多面体 顶点数(V) 面数(F) 棱数(E)
四面体 4 4
长方体 8 12
正八面体 8 12
正十二面体 20 12 30
(1)根据上面多面体模型,完成表格中的空格,你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是
V+F-E=2
V+F-E=2

(2)一个多面体的面数与顶点数相等,有12条棱,这个多面体是
7
7
面体
(3)图2足球虽然是球体,但实际上足球表面是由正五边形,正六边形皮料组成的多面体加工而成每块正五边形皮料周围都是正六边形皮料;每两个相邻的多边形恰有一条公共的边;每个顶点处都有三块皮料,而且都遵循一个正五边形、两个正六边形的规律,请你利用(1)中的关系式,求出一个足球中各有多少块正五边形、正六边形的皮料.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面的材料:1750年欧拉在写给哥德巴赫的信中列举了多面体的一些性质,其中一条是:如果用V,E,F分别表示凸多面体的顶点数、棱数、面数,则有V-E+F=2.这个发现,就是著名的欧拉定理.根据所阅读的材料,完成:一个多面体的面数为12,棱数是30,则其顶点数为
20
20

查看答案和解析>>

同步练习册答案