精英家教网 > 初中数学 > 题目详情

已知x1,x2是一元二次方程ax2+bx+c=0(a≠0,c≠0)的两个实数根,且数学公式(m≠0,n≠0).
(1)试求用m和n表示数学公式的式子;
(2)是否存在实数m和n,满足数学公式使数学公式成立?若存在,求出m和n的值;若不存在,请说明理由.

解:(1)由题意得,x1+x2=-①,x1x2=②.
=,得x1=x2③.
把③代入①,得x2=-
把③代入②得x22=
消去x2,得=

(2)若=成立,
设(m+n)2=6k,mn=5k(k>0).
则m+n=±,mn=5k.
若m,n存在,应是方程x2±z+5k=0的根.
∵△=(±2-20k=-14k<0(k>0).
∴m、n不存在.
分析:(1)由一元二次方程的根与系数的关系得到x1+x2=-①,x1x2=②,由已知变形后代入①②,联立方程,消去x,就可得到值.
(2)由于=成立,设出适当的参数,建立关于以m+n和mn为两根的新的一元二次方程,求得其△的符号后,来判定根的情况后,决定是否存在m,n的值.
点评:解答此题要知道一元二次方程根的情况与判别式△的关系和一元二次方程根与系数的关系:
(1)△>0?方程有两个不相等的实数根;
(2)△=0?方程有两个相等的实数根;
(3)△<0?方程没有实数根;
(4)x1+x2=-
(5)x1•x2=
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知x1,x2是一元二次方程x2+6x+3=0两个实数根,则
x1
x2
+
x2
x1
的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x1、x2是一元二次方程ax2+bx+c=0的两根,且判别式△=b2-4ac≥0,则x1-x2的值为(  )
A、
a
B、
2a
C、±
a
D、±
2a

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x1,x2是一元二次方程(k+1)x2+2kx+k-3=0的两个不相等的实数根.
(1)求实数k的取值范围.
(2)在(1)条件下,当k为最小整数时一元二次方程x2-x+k=0与x2+mx-m2=0只有一个相同的根,求m值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x1,x2是一元二次方程x2-x+2m-2=0的两个实根.
(1)求m的取值范围;
(2)若m满足2x1+x2=m+1,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

37、已知x1、x2是一元二次方程x2-3x+1=0的两个根,求(x1-1)(x2-1)的值.

查看答案和解析>>

同步练习册答案