精英家教网 > 初中数学 > 题目详情
(2013•本溪一模)如图①,A,D分别在x轴,y轴上,AB∥y轴,DC∥x轴.点P从点D出发,以1个单位长度/秒的速度,沿五边形OABCD的边匀速运动一周,若顺次连接P,O,D三点所围成的三角形的面积为S,点P运动的时间为t秒,已知S与t之间的函数关系如图②中折线O′EFGHM所示.
(1)点B的坐标为
(8,2)
(8,2)
;点C的坐标为
(5,6)
(5,6)

(2)若直线PD将五边形OABCD的周长分为11:15两部分,求PD的解析式.
分析:(1)由于点P从点D出发,根据图②中S与t的图象可知,点P按顺时针方向沿五边形OABCD的边作匀速运动,又运动速度为1个单位长度/秒,所以DC=5,BC=5,AB=2,AO=8,OD=6,由此得到点C的坐标;过点B作BP⊥OD于P,过点C作CQ⊥BP于Q,根据矩形的性质、勾股定理求出点B的坐标;
(2)先求出五边形OABCD的周长为26,根据直线PD将五边形OABCD的周长分为11:15两部分,确定点P的位置有两种可能的情况:①在AB的中点;②在OA上,并且距离点A3个单位长度.再分别表示出点P的坐标,然后运用待定系数法求出PD的解析式.
解答:解:(1)由题意,可知点P的运动路线是:D→C→B→A→O→D,DC=5,BC=10-5=5,AB=12-10=2,AO=20-12=8,OD=26-20=6,所以点C的坐标为(5,6);
如图①,过点B作BP⊥OD于P,过点C作CQ⊥BP于Q,则四边形DCQP、ABPO均为矩形,PQ=DC=5,CQ=DP=OD-AB=6-2=4,
在Rt△BCQ中,∵∠BQC=90°,
∴BQ=
BC2-CQ2
=
52-42
=3,
∴BP=BQ+PQ=3+5=8,
∴点B的坐标为(8,2);

(2)设PD的解析式为y=kx+b.
∵五边形OABCD的周长为:5+5+2+8+6=26,
∴直线PD将五边形OABCD的周长分为11:15两部分时,点P的位置有两种可能的情况:
①如果点P在AB的中点,那么DC+CB+BP=5+5+1=11,PA+AO+OD=1+8+6=15,点P的坐标为(8,1).
∵P(8,1),D(0,6),
8k+b=1
b=6
,解得
k=-
5
8
b=6

∴PD的解析式为y=-
5
8
x+6;
②如果点P在OA上,并且距离点A3个单位长度,那么DC+CB+BA+AP=5+5+2+3=15,PO+OD=8-3+6=11,点P的坐标为(5,0).
∵P(5,0),D(0,6),
5k+b=0
b=6
,解得
k=-
6
5
b=6

∴PD的解析式为y=-
6
5
x+6.
综上所述,PD的解析式为y=-
5
8
x+6或y=-
6
5
x+6.
故答案为(8,2),(5,6).
点评:本题结合动点问题考查了矩形的性质,勾股定理,三角形的面积,五边形的周长,一次函数的图象与性质,运用待定系数法求一次函数的解析式等知识,综合性较强,难度适中.从函数图象中准确获取信息及利用分类讨论思想是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•本溪一模)如图,已知:△ABC是的⊙O内接三角形,D是OA延长线上的一点,连接DC,且∠B=∠D=30°.
(1)判断直线CD与⊙O的位置关系,并说明理由;
(2)若AC=6,∠ACB=45°,求弦AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•本溪一模)某商店在4月1日开始销售甲、乙两种商品,一段时间后,售出甲种商品19千克,售出乙种商品140千克,其中乙种商品的销售金额比甲种商品销售金额多1020元,甲种商品的单价是乙种商品单价的2倍.
(1)请求出甲、乙两种商品的销售单价是多少元/千克?
(2)若经过店主的统计,甲种商品的累计销售量y1(千克)与销售天数x之间满足关系式:y1=2x-1;乙种商品的累计销售量y2(千克)与销售天数x之间满足关系式:y2=x2+4x;则销售几天后两种商品的销售金额可以达到820元?
(3)在(2)的条件下,请求出从第几天起,乙种商品每天销售金额比甲种商品每天销售金额至少多50元?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•本溪一模)(1)已知,如图①,Rt△ABC∽Rt△AB′C′,相似比为k,∠ACB=∠AC′B′=90°,且∠A=30°,将△AB′C′绕点A逆时针旋转α后,点C′恰好在边BC的延长线上,如图②,若四边形ABB′C′是矩形,求α的度数及k的值;
(2)如图③,等腰△ABC∽等腰△AB′C′,相似比为k,AB=AC,AB′=AC′,∠A=36°,将△AB′C′绕点A逆时针旋转α后,点B′恰好在BC边的延长线上,如图④,若AC′∥BB′,①判断四边形ABB′C′的形状并说明理由;②α=
72°
72°
,k=
-1+
5
2
-1+
5
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•本溪一模)如图,已知抛物线y=ax2+bx+3(a≠0)经过A(-1,0),C(3,0)两点.
(1)求抛物线的解析式;
(2)如图,动点D从点O开始沿OB向终点B以每秒1个单位长度的速度运动,动点E从点O开始沿OC向终点C以每秒2个单位长度的速度运动,过点E作GE⊥OC,交CB于点F,交抛物线y=ax2+bx+3于点G,连接BG,DF,点D,E从点O同时出发,当其中一点到达端点时,另一点也随之停止运动.设运动时间为t秒(t≥0),在运动过程中,若四边形BDFG为正方形,求t的值;
(3)将(2)中的正方形BDFG沿y轴翻折180°,得到正方形BDF′G′,然后将正方形BDF′G′沿直线BC方向向下平移,设在平移过程中正方形BDF′G′与△BOC重合部分的面积为S,平移的距离为m(0≤m≤3
2
),请直接写出S与m之间的函数关系式.

查看答案和解析>>

同步练习册答案