精英家教网 > 初中数学 > 题目详情
如图,抛物线与x轴交于点A,B,与轴交于点C。过点C作CD∥x轴,交抛物线的对称轴于点D,连结BD。已知点A坐标为(-1,0)。

(1)求该抛物线的解析式;
(2)求梯形COBD的面积。
(1)(2)
解:(1)将A(―1,0)代入中,得:0=4a+4,解得:a=-1。
∴该抛物线解析式为
(2)对于抛物线解析式,令x=0,得到y=3,即OC=3,
∵抛物线的对称轴为直线x=1,∴CD=1。
∵A(-1,0),∴B(3,0),即OB=3。

(1)将A坐标代入抛物线解析式,求出a的值,即可确定出解析式。
(2)抛物线解析式令x=0求出y的值,求出OC的长,根据对称轴求出CD的长,令y=0求出x的值,确定出OB的长,根据梯形面积公式即可求出梯形COBD的面积。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某公司在固定线路上运输,拟用运营指数Q量化考核司机的工作业绩.Q =" W" + 100,而W的大小与运输次数n及平均速度x(km/h)有关(不考虑其他因素),W由两部分的和组成:一部分与x的平方成正比,另一部分与x的n倍成正比.试行中得到了表中的数据.
次数n
2
1
速度x
40
60
指数Q
420
100
(1)用含x和n的式子表示Q;
(2)当x = 70,Q = 450时,求n的值;
(3)若n = 3,要使Q最大,确定x的值;
(4)设n = 2,x = 40,能否在n增加m%(m>0)同时x减少m%的情况下,而Q的值仍为420,若能,求出m的值;若不能,请说明理由.
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是 

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,二次函数的图象与 轴交于A(,0),B(2,0),且与轴交于点C.


(1)求该抛物线的解析式,并判断△ABC的形状;
(2)点P是x轴下方的抛物线上一动点, 连接PO,PC,
并把△POC沿CO翻折,得到四边形,求出使四边形为菱形的点P的坐标;
(3) 在此抛物线上是否存在点Q,使得以A,C,B,Q四点为顶点的四边形是直角梯形?若存在, 求出Q点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,抛物线)与y轴交于点A,其对称轴与x轴交于点B。

(1)求点A,B的坐标;
(2)设直线l与直线AB关于该抛物线的对称轴对称,求直线l的解析式;
(3)若该抛物线在这一段位于直线l的上方,并且在这一段位于直线AB的下方,求该抛物线的解析式。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx﹣4与x轴交于A(4,0)、B(﹣2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D,连接CP.

(1)求该抛物线的解析式;
(2)当动点P运动到何处时,BP2=BD•BC;
(3)当△PCD的面积最大时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数y=﹣2(x﹣5)2+3的顶点坐标是   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在二次函数的图像中,若的增大而增大,则的取值范围是
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.

(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;
(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;
(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列命题中,是真命题的是(     )
①面积相等的两个直角三角形全等;②对角线互相垂直的四边形是正方形;
③将抛物线向左平移4个单位,再向上平移1个单位可得到抛物线
④两圆的半径R、r分别是方程的两根,且圆心距,则两圆外切.
A.①B.②C.③D.④

查看答案和解析>>

同步练习册答案