精英家教网 > 初中数学 > 题目详情
先观察下列等式,再回答下列问题:
1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2

1+
1
22
+
1
32
=1+
1
2
-
1
2+1
=1
1
6

1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12

(1)请你根据上面三个等式提供的信息,猜想
1+
1
42
+
1
52
的结果,并验证;
(2)请你按照上面各等式反映的规律,试写出用含n的式子表示的等式(n为正整数).
分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;
(2)根据(1)找的规律写出表示这个规律的式子.
解答:解:
(1)
1+
1
42
+
1
52
=1+
1
4
-
1
4+1
=1
1
20

验证:
1+
1
42
+
1
52
=
1+
1
16
+
1
25
=
1+
25
400
+
16
400
=
441
400
=1
1
20


(2)
1+
1
n2
+
1
(n+1)2
=1+
1
n
-
1
n+1
=1+
1
n(n+1)
(n为正整数).
点评:此题是一个阅读题目,通过阅读找出题目隐含条件.总结:找规律的题,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

先观察下列等式,再回答问题:
1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2

②.
1+
1
22
+
1
32
=1+
1
2
-
1
2+1
=1
1
6

1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12

根据上面三个等式提供的信息,请猜想
1+
1
42
+
1
52
的结果为
 
,请按照上各等式反映的规律,写出用n(n为正整数)表示的等式
 

查看答案和解析>>

科目:初中数学 来源: 题型:

先观察下列等式,再回答问题:
1+
1
12
+
1
22
=1+
1
1
-
1
1+1
=1
1
2
1+
1
22
+
1
32
=1+
1
2
-
1
2+1
=1
1
6
1+
1
32
+
1
42
=1+
1
3
-
1
3+1
=1
1
12

(1)根据上面三个等式提供的信息,请猜想
1+
1
42
+
1
52
的结果,并进行验证;
(2)根据上面的规律,可得
1+
1
92
+
1
102
=
 

(3)请按照上面各等式反映的规律,试写出用n(n为正整数)表示的等式,并加以验证.

查看答案和解析>>

科目:初中数学 来源: 题型:

先观察下列等式,再回答问题.
1+
1
12
+
1
22
=1+
1
1
-
1
2
=1+
1
1×2
=1
1
2

1+
1
22
+
1
32
=1+
1
2
-
1
3
=1+
1
2×3
=1
1
6

1+
1
32
+
1
42
=1+
1
3
-
1
4
=1+
1
3×4
=1
1
12

1+
1
42
+
1
52
=1+
1
4
-
1
5
=1+
1
4×5
=1
1
20

(1)根据上面提供的信息,猜想
1+
1
52
+
1
62
=
 

(2)你能根据各等式反映的观律,写出用n(n为正整数)表示上述规律的等式吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

先观察下列等式,再回答下列问题①
1 +
1
12
+
1
22
=1+
1
1
-
1
2
=1
1
2
;②
1+
1
22
+
1
32
=1+
1
2
-
1
3
=1
1
6
;③
1+
1
32
+
1
42
=1+
1
3
-
1
4
=1
1
12
,请你根据上面三个等式提供的信息,猜想
1 +
1
92
+
1
102
的结果为
 

查看答案和解析>>

同步练习册答案