精英家教网 > 初中数学 > 题目详情
3.已知一个直角三角形的两条边长分别是6和8,则第三边长是(  )
A.10B.8C.2$\sqrt{7}$D.10或2$\sqrt{7}$

分析 已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.

解答 解:当8是斜边时,第三边长=$\sqrt{{8}^{2}-{6}^{2}}$=2$\sqrt{7}$;
当6和8是直角边时,第三边长=$\sqrt{{8}^{2}+{6}^{2}}$=10;
∴第三边的长为:2$\sqrt{7}$或10,
故选D.

点评 本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.解方程组:$\left\{{\begin{array}{l}{4x+2y=10}\\{3x-4y=2}\end{array}}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.将下列各多项式因式分解
(1)15a2+5a
(2)x5-x3
(3)a3b-4a2b2+4ab3
(4)1-x2-y2+x2y2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.图(a)、图(b)是两张形状,大小完全相同的8×8的方格纸,方格纸中的每个小正方形的边长均为1,请在图(a)、图(b)中分别画出符合要求的图形,要求:所画图形各顶点必须与方格纸中的小正方形顶点重合.
(1)以AB为一边,画一个成中心对称的四边形ABCD,使其面积为12;
(2)以EF为一边,画△EFP,使其面积为$\frac{15}{2}$的轴对称图形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,在?ABCD中,分别以AB、AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G落在点A、E之间,连接EF、CF.则以下四个结论:
①CG⊥AE;
②△CDF≌△EBC;
③∠CDF=∠EAF;
④△ECF是等边三角形.
其中一定正确的是②③④.(把正确结论的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知:如图,点E是⊙O的直径,AB上一个动点(与A,B不重合),在AB下方有一条弦CD始终与AB保持平行,且AE=CD.连接AC,ED,延长ED交⊙O切线BF于点F,延长CD交BF于点M.请探究当点E在运动时:
(1)四边形ACDE能够成为菱形吗?写出你的猜想并给予证明.
(2)MB与MF数量关系是否发生变化?写出猜想并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,在平面直角坐标系xOy中,二次函数y=-x2-2x图象位于x轴上方的部分记作F1,与x轴交于点P1和O;F2与F1关于点O对称,与x轴另一个交点为P2;F3与F2关于点P2对称,与x轴另一个交点为P3;….这样依次得到F1,F2,F3,…,Fn,则Fn的顶点坐标为[2n-3,(-1)n+1](n为正整数,用含n的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图1,在△ABC和△MNB中,∠ACB=∠MBN=90°,AC=BC=4,MB=NB=2,点N在BC边上,连接AN,CM,点E,F,D,G分别为AC,AN,MN,CM的中点,连接EF,FD,DG,EG.
(1)判断四边形EFDG的形状,并证明;
(2)求FD的长;
(3)如图2,将图1中的△MBN绕点B逆时针旋转90°,其他条件不变,猜想此时四边形EFDG的形状,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.方程组$\left\{\begin{array}{l}{(x-7)(x+8)=0}\\{\sqrt{2}x-\frac{1}{2}y=1}\end{array}\right.$共有2组解.

查看答案和解析>>

同步练习册答案