精英家教网 > 初中数学 > 题目详情

已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(﹣2,0),与反比例函数在第一象限内的图象的交于点B(2,n),连接BO,若SAOB=4.

(1)求该反比例函数的解析式和直线AB的解析式;
(2)若直线AB与y轴的交点为C,求△OCB的面积.

解:(1)由A(﹣2,0),得OA=2;
∵点B(2,n)在第一象限内,SAOB=4,∴OA•n=4。∴n=4。∴点B的坐标是(2,4)。
设该反比例函数的解析式为
将点B的坐标代入,得,∴m=8。
∴反比例函数的解析式为:
设直线AB的解析式为y=kx+b(k≠0),
将点A,B的坐标分别代入,得,解得,
∴直线AB的解析式为y=x+2。
(2)在y=x+2中,令x=0,得y=2,∴点C的坐标是(0,2)。∴OC=2。
∴SOCB=OC×2=×2×2=2。

解析试题分析:(1)先由A(﹣2,0),得OA=2,点B(2,n),SAOB=4,得OA•n=4,n=4,则点B的坐标是(2,4),把点B(2,4)代入反比例函数的解析式为,可得反比例函数的解析式为:;再把A(﹣2,0)、B(2,4)代入直线AB的解析式为y=kx+b可得直线AB的解析式为y=x+2。
(2)把x=0代入直线AB的解析式y=x+2得y=2,即OC=2,可得SOCB=OC×2=×2×2=2。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,一次函数的图象与反比例函数(x>0)的图象交于点P,PA⊥x轴于点A,PB⊥y轴于点B,一次函数的图象分别交x轴、y轴于点C、点D,且SDBP=27,

(1)求点D的坐标;
(2)求一次函数与反比例函数的表达式;
(3)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,反比例函数的图象与一次函数的图象交于点M,N,已点M的坐标为(1,3),点N的纵坐标为-1.

(1)求一次函数和反比例函数的解析式;
(2)当y1≥3时,求x的取值范围;
(3)求使y1>y2时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知反比例函数(k为常数,k≠0)的图象经过点A(2,3).
(1)求这个函数的解析式;
(2)判断点B(-1,6),C(3,2)是否在这个函数的图象上,并说明理由;
(3)当-3<x<-1时,求y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,反比例函数(x>0)的图象和矩形ABCD的第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6) .

(1)直接写出B、C、D三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,正比例函数y=kx的图象与反比例函数的图象有一个交点A(m,2).

(1)求m的值;
(2)求正比例函数y=kx的解析式;
(3)试判断点B(2,3)是否在正比例函数图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,直线y=k1x+b交x轴于点A(-3,0),交y轴于点B(0,2),并与的图象在第一象限交于点C,CD⊥x轴,垂足为D,OB是△ACD的中位线。

(1)求一次函数与反比例函数的解析式;
(2)若点是点C关于y轴的对称点,请求出△的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,直线AB与y轴、x轴分别交于点A、点B,与双曲线交于点C(1,6)、D(3,n)两点,轴于点E,轴于点F.

(1)填空:
(2)求直线AB的解析式;
(3)求证:.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图是一个正方体的平面展开图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和均为5,求的值. 

查看答案和解析>>

同步练习册答案