精英家教网 > 初中数学 > 题目详情
(本题3分+3分+4分)施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示).

⑴求出这条抛物线的函数解析式,并写出自变量x的取值范围;
⑵隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明;
⑶施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上。B、C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.

图2

 
 

 
(1)y=-1/6x2+2x  (2分) 0≤x≤12(1分)
(2)不能(3分) (3)15(4分)解析:
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本题10分)

   

(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN的长度;

(2)若点C是线段AB上任意一点,且AC=a,BC=b,点M、N分别是AC、BC的中点,请直接写出线段MN的长度;(结果用含a、b的代数式表示,并填入空格中)

(3)在(2)中,把点C是线段AB上任意一点改为:点C是射线AB上任意一点,其他条件不变,请在“备用图”上画出示意图,并求线段MN的长度,要求写出过程.

 

查看答案和解析>>

科目:初中数学 来源:2011-2012年江苏省张家港市九年级第一学期调研试卷数学卷 题型:解答题

(本题2分+3分+4分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件,后来经过市场调查,发现这种商品每降低1元,其销量可增加10件。

(1)求商场经营该商品原来一天可获利润多少元?

(2)设后来该商品每件降价x元,商场一天可获利y元。

①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?

②求出y与x之间的函数关系式,并通过画该函数图像的草图,观察其图象的变化趋势,结合题意写出该x取何值时,商场所获利润不少于2160元?

 

查看答案和解析>>

科目:初中数学 来源:2011-2012年江苏省张家港市九年级第一学期调研试卷数学卷 题型:解答题

(本题2分+4分)已知函数是常数).

⑴求证:不论为何值,该函数的图象都经过轴上的一个定点;

⑵若该函数的图象与轴只有一个交点,求的值.

 

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(新疆乌鲁木齐卷)数学 题型:解答题

(本题14分)如图,在平面直角坐标系中.四边形OABC是平行四边形.直线经过O、C两点.点A的坐标为(8,o),点B的坐标为(11.4),动点P在线段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O一C—B相交于点M。当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒().△MPQ的面积为S.

(1)点C的坐标为___________,直线的解析式为___________.(每空l分,共2分)

(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围。

(3)试求题(2)中当t为何值时,S的值最大,并求出S的最大值。

(4)随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线相交于点N。试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.

 

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(山西卷)数学 题型:解答题

(本题14分)如图,在平面直角坐标系中.四边形OABC是平行四边形.直线经过O、C两点.点A的坐标为(8,o),点B的坐标为(11.4),动点P在线段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O一C—B相交于点M。当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒().△MPQ的面积为S.

(1)点C的坐标为___________,直线的解析式为___________.(每空l分,共2分)

(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围。

(3)试求题(2)中当t为何值时,S的值最大,并求出S的最大值。

(4)随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线相交于点N。试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.

 

查看答案和解析>>

同步练习册答案