精英家教网 > 初中数学 > 题目详情
如图,已知正方形ABCD的边长是2,E是AB的中点,延长BC到点F使CF=AE.
(1)求证:
(2)把向左平移,使重合,得于点.请判断AH与ED的位置关系,并说明理由.
(3)求的长.
(1)证明见解析;(2)AH⊥ED.(3).

试题分析:(1)根据正方形的性质推出∠DAB=∠DCB=90°,AD=DC,根据SAS即可证出答案;
(2)AH⊥ED,根据正方形的性质和平移的性质可证明△ADE≌△CDF,所以得到∠EDF=90°.再由已知条件AH∥DF,利用平行线的性质可证明∠EGH=90°,即垂直成立.
(3)利用勾股定理求出DE的长,再根据三角形的面积公式表示出△EAD的面积即AE•AD或ED•AG,由已知数据即可求出AG的长.
试题解析:(1)证明:∵正方形ABCD,
∴∠DAB=∠DCB=90°,AD=DC,
∴∠DCF=90°=∠DAE,
∵CF=AE,
∴△ADE≌△CDF.
(2)证明:∵正方形ABCD,
∴AB=BC=AD,∠DAB=∠B=90°,
∵E为AB中点,H为BC的中点,
∴AE=BH,
∴△DAE≌△ABH,
∴∠EDA=∠BAH,
∵∠AED+∠ADE=90°,
∴∠AED+∠BAH=90°,
∴∠AGE=180°-90°=90°,
∴AH⊥ED.
(3)在△EAD中,由勾股定理得:DE=
由三角形的面积公式得:AE×AD=DE×AG,
∴1×2=×AG,
∴AG=.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

准备一张矩形纸片,按如图操作:
将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点.
(1)求证:四边形BFDE是平行四边形;
(2)若四边形BFDE是菱形,AB=2,求菱形BFDE的面积.
 

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平行四边形ABCD中,∠ABC=45°,E、F分别在CD和BC的延长线上,AE∥BD,∠EFC=30°, AB=2.
求CF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读理解:一张矩形纸片,剪下一个正方形,剩下一个矩形,称为第一次操作;在剩下的矩形纸片中再剪下一个正方形,剩下一个矩形,称为第二次操作;…;若在第n次操作后,剩下的矩形为正方形,则称原矩形为n阶奇异矩形.如图1,矩形ABCD中,若AB=3,BC=9,则称矩形ABCD为2阶奇异矩形.

(1)判断与操作:
如图2,矩形ABCD长为7,宽为3,它是奇异矩形吗?如果是,请写出它是几阶奇异矩形,并在图中画出裁剪线;如果不是,请说明理由.
(2)探究与计算:
已知矩形ABCD的一边长为20,另一边长为a(a<20),且它是3阶奇异矩形,请画出矩形ABCD及裁剪线的示意图,并在图的下方写出a的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一透明的敞口正方体容器ABCD -A′B′C′D′ 装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE = α,如图17-1所示).
探究 如图1,液面刚好过棱CD,并与棱BB′ 交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.解决问题:

(1)CQ与BE的位置关系是___  ___,BQ的长是____  ___dm;
(2)求液体的体积;(参考算法:直棱柱体积V液 = 底面积SBCQ×高AB)
(3)求α的度数.(注:sin49°=cos41°=,tan37°=)
拓展 在图17-1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图17-3或图17-4是其正面示意图.若液面与棱C′C或CB交于点P,设PC = x,BQ = y.分别就图17-3和图17-4求y与x的函数关系式,并写出相应的α的范围.
延伸 在图17-4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图17-5,隔板高NM =" 1" dm,BM = CM,NM⊥BC.继续向右缓慢旋转,当α = 60°时,通过计算,判断溢出容器的液体能否达到4 dm3.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,菱形ABCD中,,DF⊥AB于点E,且DF=DC,连接FC,则∠ACF的度数为     度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在一块平行四边形的实验田里种植四种不同的农作物,现将该实验田划成四个平行四边形地块(如图),已知其中三块田的面积分别是10m2,15m2, 30m2,则整个这块实验田的面积为     m2.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠DHF的度数是
A.35°B.50°C.65°D.75°

查看答案和解析>>

同步练习册答案