精英家教网 > 初中数学 > 题目详情
6.(背景)某班在一次数学实践活动中,对矩形纸片进行折叠实践操作,并将其产生的数学问题进行相关探究.
(操作)如图,在矩形ABCD中,AD=6,AB=4,点P是BC边上一点,现将△APB沿AP对折,得△APM,显然点M位置随P点位置变化而发生改变
(问题)试求下列几种情况下:点M到直线CD的距离
(1)∠APB=75°;(2)P与C重合;(3)P是BC的中点.

分析 (1)如图1,过M作EF⊥AD,则EF⊥BC,由∠AMP=∠B=∠MFP=90°,得到∠AME=∠MPF,推出△AEM∽△MFP,根据已知条件得到∠MPF=30°,AE=2,即可得到结论;
(2)如图2,过M作GH∥AD交BA,CD的延长线于G,H,则四边形ADHG是矩形,推出△AMG∽△MHP,设AG=x,则DH=x,得到PH=4+x,列比例式得到MH=$\frac{3}{2}$x,根据勾股定理得到x=$\frac{20}{13}$(负值舍去),即可得到结论;
(3)当P是BC的中点时,如图3,过M作EF∥AB交AB,BC于E,F,推出△AEM∽△MFP,根据相似三角形的性质得到$\frac{x}{3}=\frac{EM}{4}$,得到EM=$\frac{4}{3}$x,根据勾股定理列方程即可得到结论.

解答 解:(1)当∠APB=75°时,如图1,过M作EF⊥AD,则EF⊥BC,
∵∠AMP=∠B=∠MFP=90°,
∴∠AME=∠MPF,
∴△AEM∽△MFP,
∵∠APB=75°,
∴∠MPF=30°,
∵AM=AB=4,
∴AE=2,
∴DE=4;

(2)当P与C重合,如图2,过M作GH∥AD交BA,CD的延长线于G,H,
则四边形ADHG是矩形,
∵∠AMP=∠ABC=∠AMC=90°,
∴∠AMG=∠MPH,
∴△AMG∽△MHP,
设AG=x,则DH=x,
∴PH=4+x,
∴$\frac{MH}{6}=\frac{x}{4}$,
∴MH=$\frac{3}{2}$x,
在Rt△MHP中,MH2+PH2=MC2
即($\frac{3}{2}$x)2+(4x)2=62
∴x=$\frac{20}{13}$(负值舍去),
∴MH=$\frac{30}{13}$;

(3)当P是BC的中点时,如图3,过M作EF∥AB交AB,BC于E,F,
∵P是BC的中点,
∴BP=3,
设PF=x,则BF=3+x,
∴AE=3+x,
由折叠的性质得,AM=AB=4,PM=PB=3,∠AMP=∠B=90°,
∴△AEM∽△MFP,
∴$\frac{x}{3}=\frac{EM}{4}$,
∴EM=$\frac{4}{3}$x,
在Rt△AEM中,
AE2+EM2=AM2
即($\frac{4}{3}$x)2+(3+x)2=42
∴x=$\frac{21}{25}$(负值舍去),
∴DE=$\frac{54}{25}$.

点评 本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、勾股定理;熟练掌握翻折变换和矩形的性质,并能进行推理计算是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.△ABC各顶点坐标分别为A(5,1),B(2,3),C(0,0),将它绕原点顺时针方向旋转90°,得到△A1B1C1
(1)求A1,B1,C1的坐标;
(2)求△A1B1C1的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.类比平行四边形,我们学习筝形,定义:两组邻边分别相等的四边形叫做筝形.如图①,若AD=CD,AB=CB,则四边形ABCD是筝形.
(1)在同一平面内,△ABC与△ADE按如图②所示放置,其中∠B=∠D=90°,AB=AD,BC与DE相交于点F,请你判断四边形ABFD是不是筝形,并说明理由.
(2)请你结合图①,写出一个筝形的判定方法(定义除外).
在四边形ABCD中,若AD=CD,∠ADB=∠CDB,则四边形ABCD是筝形.
(3)如图③,在等边三角形OGH中,点G的坐标为($\sqrt{3}$-1,0),在直线l:y=-x上是否存在点P,使得以O,G,H,P为顶点的四边形为筝形?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,已知矩形OABC的一个顶点B的坐标是(4,2),反比例函数y=$\frac{k}{x}$(x>0)的图象经过矩形的对称中心E,且与边BC交于点D,则点CD的长为1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.一个角的余角比这个角的补角的一半小30°,则这个角的大小为60度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.在?ABCD中,边AB=3,对角线AC=2$\sqrt{5}$,BD=4,则?ABCD的面积等于4$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.盒子里装有12张红色卡片,16张黄色卡片,4张黑色卡片和若干张蓝色卡片,每张卡片除颜色外都相同,从中任意摸出一张卡片,摸到红色卡片的概率是0.24.
(1)从中任意摸出一张卡片,摸到黑色卡片的概率是多少?
(2)求盒子里蓝色卡片的个数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.一次函数y=(m-1)x+m2的图象过点(0,4),且y随x的增大而增大,则m=2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图是几何体的三视图,该几何体是(  )
A.正三棱柱B.正三棱锥C.圆锥D.圆柱

查看答案和解析>>

同步练习册答案