分析 (1)BE=CD,根据等边三角形的性质证明△ABE≌△ADC,可以得出;
(2)如图1,利用勾股定理求出DC=5,再利用(1)中CD=BE,得出结论;
(3)线段BE长的最大值就是线段CD的最大值,当D、B、C在同一直线上时,DC最大为7,由此得出结论:BE的最大值为也是7.
解答 解:(1)BE=CD,理由是:
∵△ABD和△ACE都是等边三角形,
∴AD=AB,AE=AC,∠DAB=∠CAE=60°,
∴∠DAB+∠BAC=∠CAE+∠BAC,
即∠DAC=∠BAE,
∴△ABE≌△ADC(SAS),
∴CD=BE;
(2)如图1,∵∠ABC=30°,∠ABD=60°,
∴∠DBC=∠ABD+∠ABC=60°+30°=90°,
∵△ABD是等边三角形,
∴BD=AB=3,
在Rt△DBC中,∵BC=4,
∴DC=$\sqrt{B{C}^{2}+B{D}^{2}}$=$\sqrt{{4}^{2}+{3}^{2}}$=5,
∴BE=DC=5;
(3)在△BDC中,DC<BC+BD,
∴DC<3+4=7,
∴当D、B、C在同一直线上时,DC最大为7,
∵BE=DC,
∴BE的最大值为也是7.
点评 本题考查了等边三角形、全等三角形的性质和判定,全题都是围绕一个问题:BE=CD进行证明,而BE=CD是由△ABE≌△ADC得出,属于常考题型;对于第三问的最值问题,利用了三角形的三边关系得出结论.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ①④ | B. | ②③ | C. | ③④ | D. | ②④ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com