精英家教网 > 初中数学 > 题目详情
如图,在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,且AB=AC,AC=AD,有如下四个结论:①AC⊥BD;②BC=DC;③∠DBC=∠DAC;④△ABD是正三角形.请写出正确结论的序号    (请你认为正确结论的序号都填上)
【答案】分析:由AB=AC,AC=AD,可得△ABD是等腰三角形,由AC平分∠DAB,根据等腰三角形的三线合一的性质,即可得AC⊥BD,BE=DE,然后根据线段垂直平分线的性质,即可得BC=DC;又由AB=AC,AC=AD,可得B,C,D都在以A为圆心,AB为半径的圆上,根据圆周角的性质,即可得③正确.
解答:解:∵AB=AC,AC=AD,
∴AB=AD,
∵AC平分∠DAB,
∴AC⊥BD,BE=DE,
故①正确;
∴AC是BD的垂直平分线,
∴BC=DC,
故②正确;
∵AB=AC,AC=AD,
∴B,C,D都在以A为圆心,AB为半径的圆上,
∴∠DBC=∠DAC,
故③正确;
∵∠BAD不一定等于60°,
∴△ABD不一定是正三角形.
∴正确结论有①②③.
故答案为:①②③.
点评:此题考查了等腰三角形的性质与判定、线段垂直平分线的性质以及圆周角定理等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠BAC=90°,将△ABC沿线段BC向右平移得到△DEF,使CE=AE,连结AD、AE、CD,则下列结论:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四边形AECD为菱形,其中正确的共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源:浙江省同步题 题型:证明题

已知:如图,在四边形ABC中,AD=BC,AB=CD.求证:AB∥CD,AD∥BC.

查看答案和解析>>

同步练习册答案