试题分析:(1)先根据矩形的性质结合三角形的内角和定理求得∠AEB的度数,再根据折叠的性质求得∠DEF的度数,然后根据平行线的性质求得∠EFC的度数,即可得到结果;
(2) 设AD与EF交于点G.由折叠的性质可得AD平分∠BAC,所以∠BAD=∠CAD.∠AGE=∠DGE=90°,即得∠AEF=∠AFE,从而可以证得结论;
(3)过N作NH⊥AD于H,设
,根据折叠的性质及勾股定理可证得△MPF为等边三角形,则∠MFE=30°,∠MFN=60°,又MN=MF=
,则△MNF为等边三角形,即可求得结果;
(1)因为∠ABE=20°,所以∠AEB=70°
由折叠知,∠DEF=55°
所以
=∠EFC=125°;
(2)同意.
设AD与EF交于点G.
由折叠知,AD平分∠BAC,所以∠BAD=∠CAD.
由折叠知,∠AGE=∠DGE=90°,
所以∠AGE=∠AGF=90°,
所以∠AEF=∠AFE.所以AE=AF,
即△AEF为等腰三角形.
(3)过N作NH⊥AD于H
设
由折叠知,
①
②
∴△MPF为等边三角形
∴∠MFE=30°
∴∠MFN=60°,
又∵MN=MF=
∴△MNF为等边三角形
∴∠MNF=60°.
点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.