精英家教网 > 初中数学 > 题目详情
(1)动手操作:
如图①,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么的度数为        

(2)观察发现:
小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由.

(3)实践与运用:
将矩形纸片ABCD 按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小。
(1)125°;(2)同意;(3)60°

试题分析:(1)先根据矩形的性质结合三角形的内角和定理求得∠AEB的度数,再根据折叠的性质求得∠DEF的度数,然后根据平行线的性质求得∠EFC的度数,即可得到结果;
(2) 设AD与EF交于点G.由折叠的性质可得AD平分∠BAC,所以∠BAD=∠CAD.∠AGE=∠DGE=90°,即得∠AEF=∠AFE,从而可以证得结论;
(3)过N作NH⊥AD于H,设,根据折叠的性质及勾股定理可证得△MPF为等边三角形,则∠MFE=30°,∠MFN=60°,又MN=MF=,则△MNF为等边三角形,即可求得结果;
(1)因为∠ABE=20°,所以∠AEB=70°
由折叠知,∠DEF=55°
所以=∠EFC=125°;
(2)同意.  
设AD与EF交于点G.

由折叠知,AD平分∠BAC,所以∠BAD=∠CAD.
由折叠知,∠AGE=∠DGE=90°,
所以∠AGE=∠AGF=90°,
所以∠AEF=∠AFE.所以AE=AF,
即△AEF为等腰三角形.
(3)过N作NH⊥AD于H


由折叠知, ① 

② 
 
∴△MPF为等边三角形
∴∠MFE=30°
∴∠MFN=60°,
又∵MN=MF=  
∴△MNF为等边三角形
∴∠MNF=60°.
点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

下列学生剪纸作品中,既是轴对称图形又是中心对称图形的是

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将一张长方形纸片按如图所示折叠,如果,那么等于  (      )
A.B.61°C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知△ABC中,AC=BC=8,∠ACB=90°,D是直线AC上一点,CD:AC=1:2,折叠△ABC,使B落在D点上,则折痕长为                        .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图是一块长方形的场地,长,宽,从两处入口的中路宽都为,两小路汇合处路宽为,其余部分种植草坪,则草坪面积为(    )
A.m2B.m2 C.m2 D.m2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,原来是重叠的两个直角三角形,将其中一个三角形沿BC方向平移BE的距离,就得到此图形,求阴影部分面积(单位:厘米).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知:如图的顶点坐标分别为A(-4,-3) B(0,-3) C(-2,1),如将B点向右平移2个单位再向上平移4个单位到达B1点,若设的面积为的面积为,则的大小关系为(   )
A.>B.=C.<D.不能确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下图中的4个图案,是中心对称图形的有( )
A.①②B.①③C.①④D.③④

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,将△ABC(∠A<60°)以顶点B为旋转中心逆时针旋转60°得△BDE;

(1)试判断△BCE的形状,请说明理由;
(2)在(1)的条件下,再将△ABC以顶点C为旋转中心顺时针旋转60°,得△ECF;连接AD、AF,四边形AFED一定是平行四边形吗?请说明理由;
(3)四边形AFED可能是矩形吗?请说明理由。

查看答案和解析>>

同步练习册答案